Tomado de:
http://www.ubuntu-es.org/index.php?q=node/70343
Objetivo:
Por defecto Ubuntu puede leer una partición NTFS si instalais los paquetes adecuados. Actualmente se ha desarrollado un driver para permitir a LINUX escribir en sistemas de ficheros NTFS. Con esta pequeña noticia que os relato sabreis como montar un disco externo de 160Gb, formatearlo con esquema NTFS, habilitarlo para escribir y leer de él.
Notas:
Para configurar un disco fijo (no externo) de la misma forma echad un vistazo a la web de donde he extraído la información para elaborar este artículo http://www.escoin.net/blog/2007/09/18/escritura-en-particiones-ntfs/ (Gracias Jorge!)
Pasos:
1. Instalar componentes necesarios (ntfsprogs y gparted para formatearlo como NTFS, ntfs-3g y ntfs-config para habilitar la escritura y montaje de un sistema NTFS)
sudo aptitude install ntfsprogs gparted ntfs-config nfts-3g
2. En Herramientas del sistema configurad el driver NTFS-3G para que permita escribir en este tipo de sistema de ficheros:
Aplicaciones->Herramientas del sistea->Herramienta de configuración NTFS
3. Como ya tenemos instalado gparted lo ejecutamos para formatear el disco
sudo gparted
4. Seleccionad el dispositivo a formatear (en mi caso está ubicado en /dev/sdb)
GParted->Dispositivos->/dev/sdb
5. Desmontad el dispositivo si ya aparece montado usando gparted, y formateadlo en formato NTFS (necesario tener instalado el paquete ntfsprogs)
Partición->Formatear como->NTFS
6. Buscad los detalles del dispositivo NTFS para incorporarlo en el fichero /etc/fstab
sudo fdisk -l | grep NTFS
en mi caso me devolvió esta información:
/dev/sdb1 1 19457 156288321 7 HPFS/NTFS
7. Editamos el fichero /etc/fstab (haced copia de seguridad por si las moscas)
sudo gedit /etc/fstab
Mi dispositivo externo está en /dev/sdb1 y ubuntu me lo montaa en /media/disk, por tanto añadimos la siguiente linea a /etc/fstab:
/dev/sdb1 /media/disk ntfs-3g silent,umask=0,locale=es_ES.utf8,no_def_opts,allow_other 0 0
O sea mi fichero fstab queda así:
# Entry for /dev/sda1 (este es mi disco interno fijo):
UUID=16bfb7c4-f4be-49ee-92c6-4709a32f85ac / ext3 defaults,errors=remount-ro 0 1
# Entry for /dev/sda5 (esta es la partición SWAP de mi disco externo fijo) :
UUID=8eca1768-c641-4365-8c2d-c50120fa0000 none swap sw 0 0
#Mi cdrom
/dev/scd0 /media/cdrom0 udf,iso9660 user,noauto 0 0
#Esta es la linea añadida que corresponde a mi disco externo de 160 Gb
/dev/sdb1 /media/disk ntfs-3g silent,umask=0,locale=es_ES.utf8,no_def_opts,allow
_other 0 0
8. Una vez guardados los cambios en fstab, actualizaremos el montaje de todos los dispositivos añadidos en él:
sudo modprobe fuse
sudo mount -a
9. Si el disco externo no está montado, desconectadlo y conectadlo de nuevo, vereis que Ubuntu os muestra el icono en el escritorio. Ya podeis escribir en el para siempre. Haced una copia de vuestro /etc/fstab nuevo.
viernes, octubre 30, 2009
ubuntu+crear+particion+fat32
Tomado de:
http://www.galder.net/2006/12/17/crear-particion-fat32-ubuntu/
Le recomendé crear además de la partición Windows-NTFS que le venía (y si es posible pasarla a FAT), crear la partición ext3 (para los archivos de GNU/Linux), partición de swap para GNU/linux, y una última FAT32 para dejar archivos: música, documentos, etc… que al ser FAT32 es accesible y escribible tanto desde Ubuntu como de Windows.
¡Espero que te valga el manual!
El problema es que desde Windows cuándo vas a accederla te dice que está sin fomartear, y te da la única opción de formatear bajo NTFS. Al comentármelo Lander me he dado cuenta que por vagancia todavía no lo había hecho yo, y me he puesto a ello.
Sistema -> Administración -> Gestor de paquetes Synaptic
Buscamos por gparted, e instalamos este software de gestión de particiones de gnome.
Lo arrancamos por comando y cómo root.
arrancar gparted
Editar y Aplicar para aplicar los cambios:
Ahora debemos montar la nueva partición:
Primero preparamos el directorio en el que vamos a montar la partición:
Como root vamos a /media/ y mkdir windows para crear el directorio windows, y dentro de él, he creado sda7, mkdir sda7
sudo cp /etc/fstab /etc/fstab_copia
sudo gedit /etc/fstab
y añadimos la siguiente línea:
sda7 creado
/dev/sda7 es el nombre de la partición bajo GNU/linux.
vfat dice que es FAT32
y /media/windows/sda7 es dónde vamos a montar el contenido.
Cada vez que reiniciemos cargará esta partición.
Para sin reiniciar ver ahora la partición:
mount -a
Visión desde Windows:
Visión desde GNU/Linux:
http://www.galder.net/2006/12/17/crear-particion-fat32-ubuntu/
Le recomendé crear además de la partición Windows-NTFS que le venía (y si es posible pasarla a FAT), crear la partición ext3 (para los archivos de GNU/Linux), partición de swap para GNU/linux, y una última FAT32 para dejar archivos: música, documentos, etc… que al ser FAT32 es accesible y escribible tanto desde Ubuntu como de Windows.
¡Espero que te valga el manual!
El problema es que desde Windows cuándo vas a accederla te dice que está sin fomartear, y te da la única opción de formatear bajo NTFS. Al comentármelo Lander me he dado cuenta que por vagancia todavía no lo había hecho yo, y me he puesto a ello.
Sistema -> Administración -> Gestor de paquetes Synaptic
Buscamos por gparted, e instalamos este software de gestión de particiones de gnome.
Lo arrancamos por comando y cómo root.
arrancar gparted
Editar y Aplicar para aplicar los cambios:
Ahora debemos montar la nueva partición:
Primero preparamos el directorio en el que vamos a montar la partición:
Como root vamos a /media/ y mkdir windows para crear el directorio windows, y dentro de él, he creado sda7, mkdir sda7
sudo cp /etc/fstab /etc/fstab_copia
sudo gedit /etc/fstab
y añadimos la siguiente línea:
sda7 creado
/dev/sda7 es el nombre de la partición bajo GNU/linux.
vfat dice que es FAT32
y /media/windows/sda7 es dónde vamos a montar el contenido.
Cada vez que reiniciemos cargará esta partición.
Para sin reiniciar ver ahora la partición:
mount -a
Visión desde Windows:
Visión desde GNU/Linux:
miércoles, octubre 28, 2009
martes, octubre 20, 2009
Tomado de:
http://news.softpedia.com/news/How-to-Install-OpenOffice-org-3-1-on-Ubuntu-9-04-111105.shtml
How to Install OpenOffice.org 3.1 on Ubuntu 9.04
Step by step tutorial with screenshots
By Marius Nestor, Linux Editor
9th of May 2009, 14:31 GMT
Adjust text size:
OpenOffice.org 3.1.0 on Ubuntu 9.04
Enlarge picture
After our famous "How to Install OpenOffice.org 3.0 on Ubuntu 8.10" guide and because the final versions of Ubuntu 9.04 (Jaunty Jackalope) and OpenOffice.org 3.1.0 are out for some time now, we decided to create a new tutorial, about how to install the fresh and improved OpenOffice.org 3.1.0 on Ubuntu 9.04. However, this tutorial will also work for Ubuntu 8.10 and Ubuntu 8.04, but we haven't tested it!
WARNING: Before you start, please make sure that your system is up-to-date!
Any requirements? Well, all you need to get started is Ubuntu 9.04, both 32-bit and 64-bit platforms. Follow the steps below!
STEP 1 - Add the OpenOffice.org 3.1 repositories
Go to System -> Administration -> Software Sources...
Review image
Enter your password. Go to the second tab, "Third-Party Software," click on the "Add" button, and paste the line below for your Ubuntu distribution...
For Ubuntu 8.04
deb http://ppa.launchpad.net/openoffice-pkgs/ppa/ubuntu hardy main
For Ubuntu 8.10
deb http://ppa.launchpad.net/openoffice-pkgs/ppa/ubuntu intrepid main
For Ubuntu 9.04
deb http://ppa.launchpad.net/openoffice-pkgs/ppa/ubuntu jaunty main
Review image
· Right click HERE and choose the "Save Link As..." option to save the key file on your desktop.
· Go to the fourth tab, "Authentication," click the "Import Key File" button, navigate to the location where you've just saved the key file (usually, it is File System/home/YOURUSERNAME/Desktop) and double click it. You will immediately see a new entry called "247D1CFF 2009-01-21 Launchpad PPA for OpenOffice.org Scribblers."
Review image
Now, click the “Close” button, then the “Reload” one and wait for the application to close!
Review image
STEP 2 - Remove the old OpenOffice 3.0
Go to System -> Administration -> Update Manager...
Review image
Let the Update Manager load the information about new software and click on the "Partial Upgrade" button when prompted...
Review image
The partial upgrade will start and you will be asked to confirm the upgrade. Click on the "Start Upgrade" button...
Review image
When asked to remove obsolete packages, click on the "Remove" button...
Review image
When the partial upgrade is done, click on the "Close" button to finish the removal process of the installed OpenOffice.org suite.
Review image
However, not all packages were removed, so you need to do it manually before installing the new OpenOffice.org 3.1. Open a terminal (Applications -> Accessories -> Terminal) and paste the following code:
sudo apt-get remove language-support-en language-support-translations-en openoffice.org-help-en-gb openoffice.org-l10n-en-gb openoffice.org-l10n-en-za thunderbird-locale-en-gb
Type Y when asked if you want to remove those packages. When it's done, close the terminal window.
Review image
STEP 3 - Install OpenOffice.org 3.1
At this moment, you don't have any OpenOffice.org suite installed in your system. Therefore, go to Applications -> Add/Remove...
Review image
Select the "All availalbe applications" option from the "Show" drop-down menu and search for openoffice in the "Search" box. The OpenOffice.org Suite will be found... scroll down until you see it and click on the check box in front of it. Click the "Install All" button when asked if you want to install the OpenOffice.org Suite and bundled applications...
Review image
Now, click the "Apply Changes" button...
Review image
Then the "Apply" button...
Review image
Wait for the installer to install the new OpenOffice.org packages....
Review image
When the installation process is over, you will be notified. Click the "Close" button to close the Add/Remove software...
Review image
That's all, folks! Go to Applications -> Office and you can use your brand new OpenOffice.org 3.1 office suite.
Review image
And the best part is that your open source office suite will be up-to-date from now on. Take a look below at some shots of OpenOffice.org 3.1 in Ubuntu 9.04 (Jaunty Jackalope).
Review image
Review image
http://news.softpedia.com/news/How-to-Install-OpenOffice-org-3-1-on-Ubuntu-9-04-111105.shtml
How to Install OpenOffice.org 3.1 on Ubuntu 9.04
Step by step tutorial with screenshots
By Marius Nestor, Linux Editor
9th of May 2009, 14:31 GMT
Adjust text size:
OpenOffice.org 3.1.0 on Ubuntu 9.04
Enlarge picture
After our famous "How to Install OpenOffice.org 3.0 on Ubuntu 8.10" guide and because the final versions of Ubuntu 9.04 (Jaunty Jackalope) and OpenOffice.org 3.1.0 are out for some time now, we decided to create a new tutorial, about how to install the fresh and improved OpenOffice.org 3.1.0 on Ubuntu 9.04. However, this tutorial will also work for Ubuntu 8.10 and Ubuntu 8.04, but we haven't tested it!
WARNING: Before you start, please make sure that your system is up-to-date!
Any requirements? Well, all you need to get started is Ubuntu 9.04, both 32-bit and 64-bit platforms. Follow the steps below!
STEP 1 - Add the OpenOffice.org 3.1 repositories
Go to System -> Administration -> Software Sources...
Review image
Enter your password. Go to the second tab, "Third-Party Software," click on the "Add" button, and paste the line below for your Ubuntu distribution...
For Ubuntu 8.04
deb http://ppa.launchpad.net/openoffice-pkgs/ppa/ubuntu hardy main
For Ubuntu 8.10
deb http://ppa.launchpad.net/openoffice-pkgs/ppa/ubuntu intrepid main
For Ubuntu 9.04
deb http://ppa.launchpad.net/openoffice-pkgs/ppa/ubuntu jaunty main
Review image
· Right click HERE and choose the "Save Link As..." option to save the key file on your desktop.
· Go to the fourth tab, "Authentication," click the "Import Key File" button, navigate to the location where you've just saved the key file (usually, it is File System/home/YOURUSERNAME/Desktop) and double click it. You will immediately see a new entry called "247D1CFF 2009-01-21 Launchpad PPA for OpenOffice.org Scribblers."
Review image
Now, click the “Close” button, then the “Reload” one and wait for the application to close!
Review image
STEP 2 - Remove the old OpenOffice 3.0
Go to System -> Administration -> Update Manager...
Review image
Let the Update Manager load the information about new software and click on the "Partial Upgrade" button when prompted...
Review image
The partial upgrade will start and you will be asked to confirm the upgrade. Click on the "Start Upgrade" button...
Review image
When asked to remove obsolete packages, click on the "Remove" button...
Review image
When the partial upgrade is done, click on the "Close" button to finish the removal process of the installed OpenOffice.org suite.
Review image
However, not all packages were removed, so you need to do it manually before installing the new OpenOffice.org 3.1. Open a terminal (Applications -> Accessories -> Terminal) and paste the following code:
sudo apt-get remove language-support-en language-support-translations-en openoffice.org-help-en-gb openoffice.org-l10n-en-gb openoffice.org-l10n-en-za thunderbird-locale-en-gb
Type Y when asked if you want to remove those packages. When it's done, close the terminal window.
Review image
STEP 3 - Install OpenOffice.org 3.1
At this moment, you don't have any OpenOffice.org suite installed in your system. Therefore, go to Applications -> Add/Remove...
Review image
Select the "All availalbe applications" option from the "Show" drop-down menu and search for openoffice in the "Search" box. The OpenOffice.org Suite will be found... scroll down until you see it and click on the check box in front of it. Click the "Install All" button when asked if you want to install the OpenOffice.org Suite and bundled applications...
Review image
Now, click the "Apply Changes" button...
Review image
Then the "Apply" button...
Review image
Wait for the installer to install the new OpenOffice.org packages....
Review image
When the installation process is over, you will be notified. Click the "Close" button to close the Add/Remove software...
Review image
That's all, folks! Go to Applications -> Office and you can use your brand new OpenOffice.org 3.1 office suite.
Review image
And the best part is that your open source office suite will be up-to-date from now on. Take a look below at some shots of OpenOffice.org 3.1 in Ubuntu 9.04 (Jaunty Jackalope).
Review image
Review image
Excelentes themes para Ubuntu Jaunty 9.04 desde los repositorios
Tomado de:
http://paraisolinux.com.ar/excelentes-themes-para-ubuntu-jaunty-904-desde-los-repositorios/
Seguramente muchos estan cansados del theme de ubuntu, es practicamente el mismo desde….siempre! Ya hace mucho les contaba como cambiar el theme para aquellos que se bajan desde gnome-look.org, este post es distinto porque lo haremos desde los repositorios, asi:
Abrimos el archivo de repositorios:
sudo gedit /etc/apt/sources.list
Agregamos esta linea al final
deb http://ppa.launchpad.net/bisigi/ppa/ubuntu jaunty main
Guardar y Cerrar. Tambien deberemos validar la linea GPG de los repos escribiendo lo siguiente en la consola:
gpg --keyserver hkp://keyserver.ubuntu.com:11371 --recv-key 881574DE && gpg -a --export 881574DE | sudo apt-key add -
Y por ultimo actualizamos los repos asi:
sudo apt-get update
Ahora dependiendo de cual theme queramos instalar ejecutamos los siguientes comandos:
Aqua Dreams
headtheme-aqua
sudo apt-get install aquadreams-theme
Bamboo Zen
headtheme-bamboo-zen
sudo apt-get install bamboo-zen-theme
Ubuntu Exotic
exotic-pres
sudo apt-get install exotic-theme
Bueno, creo que como ejemplo bastan, el resto los pueden encontrar en la siguiente web. Personalmente me quedo con el ultimo, Exotic, esta bueno :)
http://paraisolinux.com.ar/excelentes-themes-para-ubuntu-jaunty-904-desde-los-repositorios/
Seguramente muchos estan cansados del theme de ubuntu, es practicamente el mismo desde….siempre! Ya hace mucho les contaba como cambiar el theme para aquellos que se bajan desde gnome-look.org, este post es distinto porque lo haremos desde los repositorios, asi:
Abrimos el archivo de repositorios:
sudo gedit /etc/apt/sources.list
Agregamos esta linea al final
deb http://ppa.launchpad.net/bisigi/ppa/ubuntu jaunty main
Guardar y Cerrar. Tambien deberemos validar la linea GPG de los repos escribiendo lo siguiente en la consola:
gpg --keyserver hkp://keyserver.ubuntu.com:11371 --recv-key 881574DE && gpg -a --export 881574DE | sudo apt-key add -
Y por ultimo actualizamos los repos asi:
sudo apt-get update
Ahora dependiendo de cual theme queramos instalar ejecutamos los siguientes comandos:
Aqua Dreams
headtheme-aqua
sudo apt-get install aquadreams-theme
Bamboo Zen
headtheme-bamboo-zen
sudo apt-get install bamboo-zen-theme
Ubuntu Exotic
exotic-pres
sudo apt-get install exotic-theme
Bueno, creo que como ejemplo bastan, el resto los pueden encontrar en la siguiente web. Personalmente me quedo con el ultimo, Exotic, esta bueno :)
jueves, octubre 15, 2009
viernes, octubre 09, 2009
VirtualBox - Instalar los Guest Additions en una maquina virtual con Ubuntu
Tomado de:
http://lampharin.wordpress.com/2008/04/22/instalar-los-guest-additions-en-una-maquina-virtual-con-ubuntu/
En posts anteriores habiamos visto como crear una maquina virtual y como instalar un sistema operativo en ella, el sistema que se instaló fue el Ubuntu 7.10 y es en el cual instalaremos los Guest Additios, pero, ¿para que me sirven estos? bueno, una de las razones principales, es para ya no estar batallando con el mouse de que es capturado en la maquina virtual una vez que esta se ejecuta o se da click dentro de ella, simplemente ahora solo tendriamos que mover el mouse de un lugar para otro, dentro o fuera de la maquina virtual, sin necesidad de utilizar la tecla anfitriona o especial. Otra razon, es que nos permitira compartir carpetas de un sistema (anfitrion) a otro (huesped).
Para empezar, abriremos el VirtualBox y iniciaremos la maquina virtual en la cual se quiera instalar los Guest Additions:
Seleccionamos la maquina virtual y le damos doble click para abrirla o en el boton iniciar, entonces se ejecutara el sistema operativo instalado en esa maquina, como ya mencionamos, en este caso es el Ubuntu. Nos pedira el nombre de usuario y contraseña para poder acceder, asi que pon los que defistes al momento de instalarlo. Ya una vez dentro del sistema, lo primero que hay que hacer es conseguir el archivo de instalacion de los Guest Additions, para esto nos vamos al menu Dispositivos que nos aparece en la ventana de la maquina virtual, y allí mismo seleccionamos la opcion que dice Instalar “Guest Additions”:
Entonces, una vez realizado este paso, se nos abrira una carpeta con los archivos de instalacion de los Guest Additions:
En caso de que no se habra la carpeta, en el escritorio aparece un icono semejante a una unidad lectora de CD, la cual contiene los Guest Additions, solamente hay que abrirla y nos aparecera la carpeta de los archivos de instalacion. Estos archivos lo pasaremos a otro directorio o carpeta, asi que los copiamos.
Ahora crearemos una carpeta, asi que nos vamos al menu Lugares que nos aparece en el Ubuntu, y seleccionamos la opcion que dice Carpeta personal asi como se muestra en la imagen:
Allí mismo, crearemos una nueva carpeta en donde pegaremos los archivos de instalacion que copiamos, la carpeta puede tener el nombre que sea, en este caso yo puse como nombre MiCarpeta:
Vuelvo a repetir, en la nueva carpeta que creamos (MiCarpeta), pegaremos los archivos que copiamos. Ahora, esos archivos no los podemos ejecutar usando un doble click o click derecho y abrir, ya que la forma para instalar archivos en Ubuntu es algo distinta a la de Windows, en Ubuntu se hace por medio de la Terminal, o por otras formas, pero es muy comun utilizar la Terminal del Ubuntu, asi que es importante aprender a utilizarla y saber los comandos que mas se utilizan, yo soy un novato utilizando la Terminal del Ubuntu, pero por lo menos se lo suficiente para poder instalar los Guest Additions por medio de la Terminal, asi que la abriremos, para eso nos vamos al menu Aplicaciones del Ubuntu, allí mismo nos vamos a Accesorios, y luego le damos donde dice Terminal:
Se nos abrira la Terminal, asi como se muestra en la imagen:
Si se dan cuenta, nos aparece el signo de $, esto nos dice que estamos ejecutando la Terminal como usuarios normales, asi que para evitarnos problemas de que nos pidan contraseña o de que no podamos ejecutar algunas aplicaciones por estar como usuarios normales, lo que tenemos que hacer es ponermos como usuarios root, o administrador, para esto ingresaremos a la Terminal la siguiente linea de comando ( sudo -s ) y damos enter, nos pedira una contraseña, asi que ponemos la contraseña que utilizamos para iniciar sesion en Ubuntu, nos aparecera lo siguiente:
Ahora nos aparece el signo de #, esto nos indica que estamos como usuarios root, ahora proseguiremos a acceder a la carpeta en donde copiamos los archivos de instalacion del Guest Additions, accederemos a MiCarpeta insertando la linea de comando ( cd MiCarpeta ) asi como se muestra en la imagen:
Nos aparecera una direccion en la Terminal como se muestra en el cuadro azul de la imagen, entonces ejecutaremos allí mismo el siguiente comando con el cual iniciaremos con la instalacion de los GuestAdditions, la linea de comando es ( sh ./VBoxLinuxAdditions.run ) asi como se muestra en la imagen:
Entonces se empezaran a instalar los archivos Guest Additions que se copiaron a la carpeta MiCarpeta, y ya que finalice la instalación nos aparecera lo siguiente:
Por ultimo queda reiniciar el Sistema para que finalice la instalación totalmente.
Weno, eso es todo, espero y les sirva esta pequeña guia ;)
Luego veremos como compartir carpetas y poner el audio :) Nos Vemos
http://lampharin.wordpress.com/2008/04/22/instalar-los-guest-additions-en-una-maquina-virtual-con-ubuntu/
En posts anteriores habiamos visto como crear una maquina virtual y como instalar un sistema operativo en ella, el sistema que se instaló fue el Ubuntu 7.10 y es en el cual instalaremos los Guest Additios, pero, ¿para que me sirven estos? bueno, una de las razones principales, es para ya no estar batallando con el mouse de que es capturado en la maquina virtual una vez que esta se ejecuta o se da click dentro de ella, simplemente ahora solo tendriamos que mover el mouse de un lugar para otro, dentro o fuera de la maquina virtual, sin necesidad de utilizar la tecla anfitriona o especial. Otra razon, es que nos permitira compartir carpetas de un sistema (anfitrion) a otro (huesped).
Para empezar, abriremos el VirtualBox y iniciaremos la maquina virtual en la cual se quiera instalar los Guest Additions:
Seleccionamos la maquina virtual y le damos doble click para abrirla o en el boton iniciar, entonces se ejecutara el sistema operativo instalado en esa maquina, como ya mencionamos, en este caso es el Ubuntu. Nos pedira el nombre de usuario y contraseña para poder acceder, asi que pon los que defistes al momento de instalarlo. Ya una vez dentro del sistema, lo primero que hay que hacer es conseguir el archivo de instalacion de los Guest Additions, para esto nos vamos al menu Dispositivos que nos aparece en la ventana de la maquina virtual, y allí mismo seleccionamos la opcion que dice Instalar “Guest Additions”:
Entonces, una vez realizado este paso, se nos abrira una carpeta con los archivos de instalacion de los Guest Additions:
En caso de que no se habra la carpeta, en el escritorio aparece un icono semejante a una unidad lectora de CD, la cual contiene los Guest Additions, solamente hay que abrirla y nos aparecera la carpeta de los archivos de instalacion. Estos archivos lo pasaremos a otro directorio o carpeta, asi que los copiamos.
Ahora crearemos una carpeta, asi que nos vamos al menu Lugares que nos aparece en el Ubuntu, y seleccionamos la opcion que dice Carpeta personal asi como se muestra en la imagen:
Allí mismo, crearemos una nueva carpeta en donde pegaremos los archivos de instalacion que copiamos, la carpeta puede tener el nombre que sea, en este caso yo puse como nombre MiCarpeta:
Vuelvo a repetir, en la nueva carpeta que creamos (MiCarpeta), pegaremos los archivos que copiamos. Ahora, esos archivos no los podemos ejecutar usando un doble click o click derecho y abrir, ya que la forma para instalar archivos en Ubuntu es algo distinta a la de Windows, en Ubuntu se hace por medio de la Terminal, o por otras formas, pero es muy comun utilizar la Terminal del Ubuntu, asi que es importante aprender a utilizarla y saber los comandos que mas se utilizan, yo soy un novato utilizando la Terminal del Ubuntu, pero por lo menos se lo suficiente para poder instalar los Guest Additions por medio de la Terminal, asi que la abriremos, para eso nos vamos al menu Aplicaciones del Ubuntu, allí mismo nos vamos a Accesorios, y luego le damos donde dice Terminal:
Se nos abrira la Terminal, asi como se muestra en la imagen:
Si se dan cuenta, nos aparece el signo de $, esto nos dice que estamos ejecutando la Terminal como usuarios normales, asi que para evitarnos problemas de que nos pidan contraseña o de que no podamos ejecutar algunas aplicaciones por estar como usuarios normales, lo que tenemos que hacer es ponermos como usuarios root, o administrador, para esto ingresaremos a la Terminal la siguiente linea de comando ( sudo -s ) y damos enter, nos pedira una contraseña, asi que ponemos la contraseña que utilizamos para iniciar sesion en Ubuntu, nos aparecera lo siguiente:
Ahora nos aparece el signo de #, esto nos indica que estamos como usuarios root, ahora proseguiremos a acceder a la carpeta en donde copiamos los archivos de instalacion del Guest Additions, accederemos a MiCarpeta insertando la linea de comando ( cd MiCarpeta ) asi como se muestra en la imagen:
Nos aparecera una direccion en la Terminal como se muestra en el cuadro azul de la imagen, entonces ejecutaremos allí mismo el siguiente comando con el cual iniciaremos con la instalacion de los GuestAdditions, la linea de comando es ( sh ./VBoxLinuxAdditions.run ) asi como se muestra en la imagen:
Entonces se empezaran a instalar los archivos Guest Additions que se copiaron a la carpeta MiCarpeta, y ya que finalice la instalación nos aparecera lo siguiente:
Por ultimo queda reiniciar el Sistema para que finalice la instalación totalmente.
Weno, eso es todo, espero y les sirva esta pequeña guia ;)
Luego veremos como compartir carpetas y poner el audio :) Nos Vemos
miércoles, octubre 07, 2009
10 razones para no usar Linux
tomado de:
http://www.taringa.net/posts/linux/1443212/10-razones-para-no-usar-Linux.html
A continuación vamos a repasar 10 razones por las que deberías dejar Linux a los gurús y quedarte con tu amado sistema operativo actual.
1. Porque el sistema operativo que uso ahora me satisface
Está muy bien eso del software libre, pero para el uso que le damos a nuestro PC (mirar el correo, chatear, navegar por la web, escribir documentos, escuchar canciones y ver películas) hay herramientas igual de válidas tanto en Linux como en Windows o en Mac. Así que, ¿para qué cambiar?
2. Porque no necesito saber montar un coche pieza a pieza para conducirlo
Si sabes compilar, programar y leer el código fuente de Linux estás hecho un fiera. Pero no todo el mundo quiere eso, ni tiene tiempo para ello. Con encender el ordenador, hacer un par de clics y tener a nuestra disposición los tres o cuatro programas que usamos, ya somos felices.
3. Para no ser un bicho raro
Puede sonar a exótico eso de usar Linux, pero seamos realistas. Casi nadie en nuestro círculo de amigos sabe lo que es, y te mirarán raro si empiezas a hablar de Gnome, Gimp y Synaptic. Así que no seas el rarito del grupo y haz caso de la mayoría, alguna razón tendrán.
4. Mucha cantidad, pero ¿y la calidad?
Hay cientos de aplicaciones para Linux, pero es que nosotros sólo necesitamos una que funcione, no mil y una que realicen su tarea a medias.
5. El terminal es el anticristo y quiere acabar con nosotros
Linux ha evolucionado mucho, y en la mayoría de ocasiones todo se realiza mediante ventanas y clics de ratón. Pero el terminal sigue ahí, esperando a que lo uses y se ría de ti con mensajes como “comando incorrecto, no sé de qué me hablas, instala más paquetes que aún tienes sitio en el disco, a que me chivo a root”. No lo hagas, acabará con tu paciencia y con la de tus amigos informáticos.
6. Porque conseguir que funcione correctamente es una odisea
Hay gente afortunada que instala Ubuntu en su portátil a la primera, y le funciona la webcam y el Wi-Fi. Leyendas urbanas a parte, con Linux muchas veces es imposible que todo funcione a la perfección, ya sea porque no reconoce un periférico o te dice que es incompatible o porque sencillamente se nos ha quedado viejo para los futuristas efectos visuales de la última distro de turno. Para que luego digan de Windows Vista.
7. Porque si se te estropea nadie te va a ayudar
La linuxera es una comunidad muy numerosa, y ha confeccionado toda clase de manuales y tutoriales. Incluso hay distribuciones con soporte técnico. Pero a la hora de la verdad, nunca hay nadie cuando se le necesita, y si se dignan a responderte te ningunean y tras dejarte en ridículo por tu falta de conocimientos sobre Linux te envían a leer un manual que no hay por donde cogerlo.
8. Porque en mi trabajo todo el mundo usa Windows
La cosa es aún más traumática cuando utilizas aplicaciones especializadas o diseñadas especialmente para tus tareas diarias. Así que si en el trabajo usas Windows, ¿porqué no hacerlo también en casa?
9. Porque una manzana mola más que un pingüino
Apple ha conseguido vender sus productos y hacer que los amemos como si fueran alguien más de la familia. Muchos rezan todas las noches a Steve Jobs para que les traiga un nuevo Mac por Navidad. En cambio, Linux carece de ese glamour.
10. Por llevar la contraria
Tan de moda se está poniendo el software libre que acabará imponiéndose. Así que si quieres llevar la contraria cuando todos usen Linux, quédate con Windows.
Fuente: http://es.onsoftware.com/p/10-razones-para-no-usar-linux
http://www.taringa.net/posts/linux/1443212/10-razones-para-no-usar-Linux.html
A continuación vamos a repasar 10 razones por las que deberías dejar Linux a los gurús y quedarte con tu amado sistema operativo actual.
1. Porque el sistema operativo que uso ahora me satisface
Está muy bien eso del software libre, pero para el uso que le damos a nuestro PC (mirar el correo, chatear, navegar por la web, escribir documentos, escuchar canciones y ver películas) hay herramientas igual de válidas tanto en Linux como en Windows o en Mac. Así que, ¿para qué cambiar?
2. Porque no necesito saber montar un coche pieza a pieza para conducirlo
Si sabes compilar, programar y leer el código fuente de Linux estás hecho un fiera. Pero no todo el mundo quiere eso, ni tiene tiempo para ello. Con encender el ordenador, hacer un par de clics y tener a nuestra disposición los tres o cuatro programas que usamos, ya somos felices.
3. Para no ser un bicho raro
Puede sonar a exótico eso de usar Linux, pero seamos realistas. Casi nadie en nuestro círculo de amigos sabe lo que es, y te mirarán raro si empiezas a hablar de Gnome, Gimp y Synaptic. Así que no seas el rarito del grupo y haz caso de la mayoría, alguna razón tendrán.
4. Mucha cantidad, pero ¿y la calidad?
Hay cientos de aplicaciones para Linux, pero es que nosotros sólo necesitamos una que funcione, no mil y una que realicen su tarea a medias.
5. El terminal es el anticristo y quiere acabar con nosotros
Linux ha evolucionado mucho, y en la mayoría de ocasiones todo se realiza mediante ventanas y clics de ratón. Pero el terminal sigue ahí, esperando a que lo uses y se ría de ti con mensajes como “comando incorrecto, no sé de qué me hablas, instala más paquetes que aún tienes sitio en el disco, a que me chivo a root”. No lo hagas, acabará con tu paciencia y con la de tus amigos informáticos.
6. Porque conseguir que funcione correctamente es una odisea
Hay gente afortunada que instala Ubuntu en su portátil a la primera, y le funciona la webcam y el Wi-Fi. Leyendas urbanas a parte, con Linux muchas veces es imposible que todo funcione a la perfección, ya sea porque no reconoce un periférico o te dice que es incompatible o porque sencillamente se nos ha quedado viejo para los futuristas efectos visuales de la última distro de turno. Para que luego digan de Windows Vista.
7. Porque si se te estropea nadie te va a ayudar
La linuxera es una comunidad muy numerosa, y ha confeccionado toda clase de manuales y tutoriales. Incluso hay distribuciones con soporte técnico. Pero a la hora de la verdad, nunca hay nadie cuando se le necesita, y si se dignan a responderte te ningunean y tras dejarte en ridículo por tu falta de conocimientos sobre Linux te envían a leer un manual que no hay por donde cogerlo.
8. Porque en mi trabajo todo el mundo usa Windows
La cosa es aún más traumática cuando utilizas aplicaciones especializadas o diseñadas especialmente para tus tareas diarias. Así que si en el trabajo usas Windows, ¿porqué no hacerlo también en casa?
9. Porque una manzana mola más que un pingüino
Apple ha conseguido vender sus productos y hacer que los amemos como si fueran alguien más de la familia. Muchos rezan todas las noches a Steve Jobs para que les traiga un nuevo Mac por Navidad. En cambio, Linux carece de ese glamour.
10. Por llevar la contraria
Tan de moda se está poniendo el software libre que acabará imponiéndose. Así que si quieres llevar la contraria cuando todos usen Linux, quédate con Windows.
Fuente: http://es.onsoftware.com/p/10-razones-para-no-usar-linux
martes, octubre 06, 2009
Cambiar Contraseña Postgresql en Ubuntu
Tomado de:
http://johansoft.blogspot.com/2007/09/cambiar-contrasea-de-usuario-postgres.htm
En un post anterior ya he comentado que el instalador de PostgreSQL para Ubuntu asigna una contraseña aleatoria al usuario 'postgres' y que esta debe ser cambiada manualmente post-instalación.
Esto no es un error en el instalador, es una comportamiento de seguridad por defecto del instalador. Cambiano la contraseña.
Para cambiar la contraseña en una instalación por defecto o porque simplemente se olvido la contraseña y no existen mas usuarios se hace lo siguiente en una terminal:
Tambien es posible hacerlo asi directamente:
psql -c "ALTER USER postgres WITH PASSWORD 'newpassword'" -d template1
o de la siguiente manera
1) Impersonar al usuario 'postgres'. $sudo su postgres
2) Ejecutar la utilidad psql $psqlEn este momento se esta conectando a la base de datos usando el usuario 'postgres', con este usuario puede cambiar contraseñas de muchos usuarios incluso del mismo 'postgres'.
Ahora vamos a cambiar la contraseña, ejecute sobre la linea de comandos actual la siguiente secuencia donde 'passwd' es la contraseña nueva(debe utilizarse comillas simples): alter user postgres with password 'passwd';
Si el programa response con el mensaje 'ALTER ROLE' la contraseña se ha cambiado correctamente.
Para salir se la utilidad escriba: \q para salir del usuario 'postgres' escriba lo siguiente: exit Listo.
La contraseña se ha cambiado correctamente. Probando la conexion Para probar la conexion se puede utilizar la misma utilidad 'psql' de la siguiente forma: psql -U postgres -W Presione ENTER e introduzca la nueva contraseña(usted debio haberla cambiado en el ejemplo anterior, si no lo hizo la contraseña es 'passwd').
http://johansoft.blogspot.com/2007/09/cambiar-contrasea-de-usuario-postgres.htm
En un post anterior ya he comentado que el instalador de PostgreSQL para Ubuntu asigna una contraseña aleatoria al usuario 'postgres' y que esta debe ser cambiada manualmente post-instalación.
Esto no es un error en el instalador, es una comportamiento de seguridad por defecto del instalador. Cambiano la contraseña.
Para cambiar la contraseña en una instalación por defecto o porque simplemente se olvido la contraseña y no existen mas usuarios se hace lo siguiente en una terminal:
Tambien es posible hacerlo asi directamente:
psql -c "ALTER USER postgres WITH PASSWORD 'newpassword'" -d template1
o de la siguiente manera
1) Impersonar al usuario 'postgres'. $sudo su postgres
2) Ejecutar la utilidad psql $psqlEn este momento se esta conectando a la base de datos usando el usuario 'postgres', con este usuario puede cambiar contraseñas de muchos usuarios incluso del mismo 'postgres'.
Ahora vamos a cambiar la contraseña, ejecute sobre la linea de comandos actual la siguiente secuencia donde 'passwd' es la contraseña nueva(debe utilizarse comillas simples): alter user postgres with password 'passwd';
Si el programa response con el mensaje 'ALTER ROLE' la contraseña se ha cambiado correctamente.
Para salir se la utilidad escriba: \q para salir del usuario 'postgres' escriba lo siguiente: exit Listo.
La contraseña se ha cambiado correctamente. Probando la conexion Para probar la conexion se puede utilizar la misma utilidad 'psql' de la siguiente forma: psql -U postgres -W Presione ENTER e introduzca la nueva contraseña(usted debio haberla cambiado en el ejemplo anterior, si no lo hizo la contraseña es 'passwd').
Negocios Inteligentes (2da-Parte)
Tomado de:
http://www.sinnexus.com/business_intelligence/sistemas_informacion_ejecutiva.aspx
Sistemas de Información Ejecutiva (EIS)
Un Sistema de Información para Ejecutivos o Sistema de Información Ejecutiva es una herramienta software, basada en un DSS, que provee a los gerentes de un acceso sencillo a información interna y externa de su compañía, y que es relevante para sus factores clave de éxito.
La finalidad principal es que el ejecutivo tenga a su disposición un panorama completo del estado de los indicadores de negocio que le afectan al instante, manteniendo también la posibilidad de analizar con detalle aquellos que no estén cumpliendo con las expectativas establecidas, para determinar el plan de acción más adecuado.
Sistemas de Información Ejecutiva (EIS)
De forma más pragmática, se puede definir un EIS como una aplicación informática que muestra informes y listados (query & reporting) de las diferentes áreas de negocio, de forma consolidada, para facilitar la monitorización de la empresa o de una unidad de la misma.
El EIS se caracteriza por ofrecer al ejecutivo un acceso rápido y efectivo a la información compartida, utilizando interfaces gráficas visuales e intutivas. Suele incluir alertas e informes basados en excepción, así como históricos y análisis de tendencias. También es frecuente que permita la domiciliación por correo de los informes más relevantes.
A través de esta solución se puede contar con un resumen del comportamiento de una organización o área específica, y poder compararla a través del tiempo. Es posible, además, ajustar la visión de la información a la teoría de Balanced Scorecard o Cuadro de Mando Integral impulsada por Norton y Kaplan, o bien a cualquier modelo estratégico de indicadores que maneje la compañía.
Si no está familiarizado con el concepto de Sistema de Información Ejecutiva, puede resultarle útil, además, examinar las siguientes definiciones:
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Datamining
* Datamart
* Datawarehouse
Datamart
Un Datamart es una base de datos departamental, especializada en el almacenamiento de los datos de un área de negocio específica. Se caracteriza por disponer la estructura óptima de datos para analizar la información al detalle desde todas las perspectivas que afecten a los procesos de dicho departamento. Un datamart puede ser alimentado desde los datos de un datawarehouse, o integrar por si mismo un compendio de distintas fuentes de información.
Por tanto, para crear el datamart de un área funcional de la empresa es preciso encontrar la estructura óptima para el análisis de su información, estructura que puede estar montada sobre una base de datos OLTP, como el propio datawarehouse, o sobre una base de datos OLAP. La designación de una u otra dependerá de los datos, los requisitos y las características específicas de cada departamento. De esta forma se pueden plantear dos tipos de datamarts:
Datamart OLAP
Se basan en los populares cubos OLAP, que se construyen agregando, según los requisitos de cada área o departamento, las dimensiones y los indicadores necesarios de cada cubo relacional. El modo de creación, explotación y mantenimiento de los cubos OLAP es muy heterogéneo, en función de la herramienta final que se utilice.
Datamart OLTP
Pueden basarse en un simple extracto del datawarehouse, no obstante, lo común es introducir mejoras en su rendimiento (las agregaciones y los filtrados suelen ser las operaciones más usuales) aprovechando las características particulares de cada área de la empresa. Las estructuras más comunes en este sentido son las tablas report, que vienen a ser fact-tables reducidas (que agregan las dimensiones oportunas), y las vistas materializadas, que se construyen con la misma estructura que las anteriores, pero con el objetivo de explotar la reescritura de queries (aunque sólo es posibles en algunos SGBD avanzados, como Oracle).
Los datamarts que están dotados con estas estructuras óptimas de análisis presentan las siguientes ventajas:
* Poco volumen de datos
* Mayor rapidez de consulta
* Consultas SQL y/o MDX sencillas
* Validación directa de la información
* Facilidad para la historización de los datos
Si no está familiarizado con el concepto de datamart, puede resultarle útil, además, examinar las siguientes definiciones:
* Datawarehouse
* Sistemas de Soporte a la Decisión (DSS)
* Bases de datos OLTP y OLAP
* Datamining
Datawarehouse
Un Datawarehouse es una base de datos corporativa que se caracteriza por integrar y depurar información de una o más fuentes distintas, para luego procesarla permitiendo su análisis desde infinidad de pespectivas y con grandes velocidades de respuesta. La creación de un datawarehouse representa en la mayoría de las ocasiones el primer paso, desde el punto de vista técnico, para implantar una solución completa y fiable de Business Intelligence.
La ventaja principal de este tipo de bases de datos radica en las estructuras en las que se almacena la información (modelos de tablas en estrella, en copo de nieve, cubos relacionales... etc). Este tipo de persistencia de la información es homogénea y fiable, y permite la consulta y el tratamiento jerarquizado de la misma (siempre en un entorno diferente a los sistemas operacionales).
El término Datawarehouse fue acuñado por primera vez por Bill Inmon, y se traduce literalmente como almacén de datos. No obstante, y como cabe suponer, es mucho más que eso. Según definió el propio Bill Inmon, un datawarehouse se caracteriza por ser:
* Integrado: los datos almacenados en el datawarehouse deben integrarse en una estructura consistente, por lo que las inconsistencias existentes entre los diversos sistemas operacionales deben ser eliminadas. La información suele estructurarse también en distintos niveles de detalle para adecuarse a las distintas necesidades de los usuarios.
* Temático: sólo los datos necesarios para el proceso de generación del conocimiento del negocio se integran desde el entorno operacional. Los datos se organizan por temas para facilitar su acceso y entendimiento por parte de los usuarios finales. Por ejemplo, todos los datos sobre clientes pueden ser consolidados en una única tabla del datawarehouse. De esta forma, las peticiones de información sobre clientes serán más fáciles de responder dado que toda la información reside en el mismo lugar.
* Histórico: el tiempo es parte implícita de la información contenida en un datawarehouse. En los sistemas operacionales, los datos siempre reflejan el estado de la actividad del negocio en el momento presente. Por el contrario, la información almacenada en el datawarehouse sirve, entre otras cosas, para realizar análisis de tendencias. Por lo tanto, el datawarehouse se carga con los distintos valores que toma una variable en el tiempo para permitir comparaciones.
* No volátil: el almacén de información de un datawarehouse existe para ser leído, pero no modificado. La información es por tanto permanente, significando la actualización del datawarehouse la incorporación de los últimos valores que tomaron las distintas variables contenidas en él sin ningún tipo de acción sobre lo que ya existía.
Otra característica del datawarehouse es que contiene metadatos, es decir, datos sobre los datos. Los metadatos permiten saber la procedencia de la información, su periodicidad de refresco, su fiabilidad, forma de cálculo... etc.
Los metadatos serán los que permiten simplificar y automatizar la obtención de la información desde los sistemas operacionales a los sistemas informacionales.
Los objetivos que deben cumplir los metadatos, según el colectivo al que va dirigido, son:
* Dar soporte al usuario final, ayudándole a acceder al datawarehouse con su propio lenguaje de negocio, indicando qué información hay y qué significado tiene. Ayudar a construir consultas, informes y análisis, mediante herramientas de Business Intelligence como DSS, EIS o CMI.
* Dar soporte a los responsables técnicos del datawarehouse en aspectos de auditoría, gestión de la información histórica, administración del datawarehouse, elaboración de programas de extracción de la información, especificación de las interfaces para la realimentación a los sistemas operacionales de los resultados obtenidos... etc.
Por último, destacar que para comprender íntegramente el concepto de datawarehouse, es importante entender cual es el proceso de construcción del mismo, denominado ETL (Extracción, Transformación y Carga), a partir de los sistemas operaciones de una compañía:
* Extracción: obtención de información de las distintas fuentes tanto internas como externas.
* Transformación: filtrado, limpieza, depuración, homogeneización y agrupación de la información.
* Carga: organización y actualización de los datos y los metadatos en la base de datos.
Una de las claves del éxito en la construcción de un datawarehouse es el desarrollo de forma gradual, seleccionando a un departamento usuario como piloto y expandiendo progresivamente el almacén de datos a los demás usuarios. Por ello es importante elegir este usuario inicial o piloto, siendo importante que sea un departamento con pocos usuarios, en el que la necesidad de este tipo de sistemas es muy alta y se puedan obtener y medir resultados a corto plazo.
Principales aportaciones de un datawarehouse
* Proporciona una herramienta para la toma de decisiones en cualquier área funcional, basándose en información integrada y global del negocio.
* Facilita la aplicación de técnicas estadísticas de análisis y modelización para encontrar relaciones ocultas entre los datos del almacén; obteniendo un valor añadido para el negocio de dicha información.
* Proporciona la capacidad de aprender de los datos del pasado y de predecir situaciones futuras en diversos escenarios.
* Simplifica dentro de la empresa la implantación de sistemas de gestión integral de la relación con el cliente.
* Supone una optimización tecnológica y económica en entornos de Centro de Información, estadística o de generación de informes con retornos de la inversión espectaculares.
Si no está familiarizado con el concepto de datawarehouse, puede resultarle útil, además, examinar las siguientes definiciones:
* Datamart
* Datamining
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Bases de datos OLTP y OLAP
OLTP - On-Line Transactional Processing
Los sistemas OLTP son bases de datos orientadas al procesamiento de transacciones. Una transacción genera un proceso atómico (que debe ser validado con un commit, o invalidado con un rollback), y que puede involucrar operaciones de inserción, modificación y borrado de datos. El proceso transaccional es típico de las bases de datos operacionales.
* El acceso a los datos está optimizado para tareas frecuentes de lectura y escritura. (Por ejemplo, la enorme cantidad de transacciones que tienen que soportar las BD de bancos o hipermercados diariamente).
* Los datos se estructuran según el nivel aplicación (programa de gestión a medida, ERP o CRM implantado, sistema de información departamental...).
* Los formatos de los datos no son necesariamente uniformes en los diferentes departamentos (es común la falta de compatibilidad y la existencia de islas de datos).
* El historial de datos suele limitarse a los datos actuales o recientes.
OLAP - On-Line Analytical Processing
Los sistemas OLAP son bases de datos orientadas al procesamiento analítico. Este análisis suele implicar, generalmente, la lectura de grandes cantidades de datos para llegar a extraer algún tipo de información útil: tendencias de ventas, patrones de comportamiento de los consumidores, elaboración de informes complejos… etc. Este sistema es típico de los datamarts.
* El acceso a los datos suele ser de sólo lectura. La acción más común es la consulta, con muy pocas inserciones, actualizaciones o eliminaciones.
* Los datos se estructuran según las áreas de negocio, y los formatos de los datos están integrados de manera uniforme en toda la organización.
* El historial de datos es a largo plazo, normalmente de dos a cinco años.
* Las bases de datos OLAP se suelen alimentar de información procedente de los sistemas operacionales existentes, mediante un proceso de extracción, transformación y carga (ETL).
Persistencia ROLAP, MOLAP, HOLAP
Datamining (Minería de datos)
El datamining (minería de datos), es el conjunto de técnicas y tecnologías que permiten explorar grandes bases de datos, de manera automática o semiautomática, con el objetivo de encontrar patrones repetitivos, tendencias o reglas que expliquen el comportamiento de los datos en un determinado contexto.
Básicamente, el datamining surge para intentar ayudar a comprender el contenido de un repositorio de datos. Con este fin, hace uso de prácticas estadísticas y, en algunos casos, de algoritmos de búsqueda próximos a la Inteligencia Artificial y a las redes neuronales.
De forma general, los datos son la materia prima bruta. En el momento que el usuario les atribuye algún significado especial pasan a convertirse en información. Cuando los especialistas elaboran o encuentran un modelo, haciendo que la interpretación que surge entre la información y ese modelo represente un valor agregado, entonces nos referimos al conocimiento. Vea más diferencias entre datos, información y conocimiento.
Aunque en datamining cada caso concreto puede ser radicalmente distinto al anterior, el proceso común a todos ellos se suele componer de cuatro etapas principales:
* Determinación de los objetivos. Trata de la delimitación de los objetivos que el cliente desea bajo la orientación del especialista en data mining.
* Preprocesamiento de los datos. Se refiere a la selección, la limpieza, el enriquecimiento, la reducción y la transformación de las bases de datos. Esta etapa consume generalmente alrededor del setenta por ciento del tiempo total de un proyecto de data mining.
* Determinación del modelo. Se comienza realizando unos análisis estadísticos de los datos, y después se lleva a cabo una visualización gráfica de los mismos para tener una primera aproximación. Según los objetivos planteados y la tarea que debe llevarse a cabo, pueden utilizarse algoritmos desarrollados en diferentes áreas de la Inteligencia Artificial.
* Análisis de los resultados. Verifica si los resultados obtenidos son coherentes y los coteja con los obtenidos por los análisis estadísticos y de visualización gráfica. El cliente determina si son novedosos y si le aportan un nuevo conocimiento que le permita considerar sus decisiones.
Carga de trabajo en las fases de un proyecto de datamining
En resumen, el datamining se presenta como una tecnología emergente, con varias ventajas: por un lado, resulta un buen punto de encuentro entre los investigadores y las personas de negocios; por otro, ahorra grandes cantidades de dinero a una empresa y abre nuevas oportunidades de negocios. Además, no hay duda de que trabajar con esta tecnología implica cuidar un sinnúmero de detalles debido a que el producto final involucra "toma de decisiones".
En el artículo Data Mining: Torturando a los datos hasta que confiesen, Luis Carlos Molina proporciona una visión muy clarificadora sobre la minería de datos, incluyendo interesantes ejemplos de aplicaciones de la misma. Recomendamos su lectura.
Si no está familiarizado con el concepto de Datamining, puede resultarle útil, además, examinar las siguientes definiciones:
* Datamart
* Datawarehouse
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Plan director
El plan director es un documento formal en el que se intenta plasmar, por parte de los responsables de una compañía (directivos, gerentes, empresarios...) cual será la situación de la misma dentro un período de tiempo, generalmente de 5 a 10 años.
El plan director es cualitativo: define las futuras cualidades (no las cantidades) de la compañía, finalista: indica lo que se quiere conseguir, pero no cómo conseguirlo, y atemporal: no establece plazos para alcanzar lo propuesto, a excepción de la propia vigencia del plan.
El plan director recoge tres puntos principales:
* Productos y servicios: describe el catálogo de productos y/o servicios que ofrecerá la compañía a sus clientes, y en los que deben basarse sus ingresos en el medio y en el largo plazo. Esta enumeración debería ser visionaria, completa y realista.
* Mercado potencial: describe el perfil de los clientes que tendrán acceso a los productos que ofrece la compañía (público final, empresas...), indicando el segmento más aproximado y sus características principales.
* Ventajas competitivas: describe las características que deben situar a la compañía en una situación ventajosa con respecto a su competencia. Estas ventajas deben ser, ante todo, difíciles de imitar y sostenibles en el tiempo. Aprenda más sobre ventajas competitivas aquí.
En la práctica, el plan director se suele condensar en un documento escrito (generalmente de menos de 10 páginas) que no es más una instantánea del futuro que los directivos quieren para su compañía.
El plan director es, por tanto, el eje central sobre el que se articularán otros documentos de vital importancia para la empresa, como el plan estratégico o el plan operativo anual.
Si no está familiarizado con el concepto de Plan Director, puede resultarle útil, además, examinar las siguientes definiciones:
* Plan estratégico
* Plan operativo anual (POA)
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Plan estratégico
El plan estratégico es un documento formal en el que se intenta plasmar, por parte de los responsables de una compañía (directivos, gerentes, empresarios...) cual será la estrategia de la misma durante un período de tiempo, generalmente de 3 a 5 años.
El plan estratégico es cuantitativo: establece las cifras que debe alcanzar la compañía, manifiesto: describe el modo de conseguirlas, perfilando la estrategia a seguir, y temporal: indica los plazos de los que dispone la compañía para alcanzar esas cifras.
El plan estratégico recoge tres puntos principales:
* Objetivos: un objetivo es un hecho que no depende directamente de la compañía, y que está formado por la ecuación: cantidad a alcanzar + plazo para conseguirlo. El verbo asociado a un objetivo es siempre conseguir:
- Conseguir una facturación de 1.000.000 € antes de 2.010.
- Conseguir incrementar la rentabilidad económica un 10% durante 2.008.
- Conseguir una cuota de mercado del 40% antes de Noviembre de 2.007.
Los objetivos del tipo: "Optimizar los recursos empleados" o "Maximizar el beneficio durante este año" no son válidos, ya que no indican una cantidad a alcanzar y un plazo para conseguirlo. Tampoco sería correcto el objetivo: "Gastar 10.000 € en renovar el equipamiento informático durante Febrero", ya que eso depende directamente de la compañía.
* Políticas: una política es una conducta que marca la compañía, y que sirve para describir su actitud, continuada en el tiempo, a la hora de enfrentarse a situaciones de diversa índole. El verbo asociado a una política es siempre establecer:
- Establecer una política de cobros a 30 días y de pagos a 90 días.
- Establecer una política de contratación para titulados con al menos 2 años de experiencia.
- Establecer una política retributiva basada en un 80% de retribución fija y 20% retribución variable.
Existen muchos parámetros sobre los que se puede establecer la actitud de la empresa, como la política de tesorería, la política de atención al cliente, la política de recursos humanos, la política de imagen corporativa, la política de reparto de dividendos...
* Acciones: una acción es un hecho que depende directamente de la compañía, y que generalmente se lleva a cabo para facilitar la consecución de los objetivos, fomentar el respeto a las políticas impuestas, o vertebrar la estrategia global de la empresa. El verbo asociado a una acción es siempre realizar:
- Asistir a los principales congresos del sector para mejorar la formación interna.
- Lanzar una campaña de publicidad en TV y periódicos para promocionar el nuevo producto.
- Elaborar un manual de procedimientos interno que agilice la incorporación de nuevos miembros.
Las acciones se suelen agrupar de tal manera que sea sencillo identificar su origen y, a su vez, su finalidad. Así se pueden clasificar como dependientes de un objetivo estratégico, de una política de empresa o simplemente como acciones puntuales.
En la práctica, el plan estratégico se suele sintetizar en un documento escrito (generalmente de menos de 20 páginas), concretando así las líneas estratégicas generales a seguir por la compañía.
El plan estratégico describe, por tanto, una manera de conseguir las cualidades organizacionales enumeradas en el plan director. No obstante, el plan estratégico no suele estar lo suficientemente detallado como para actuar a nivel departamental. Para ello, se suele utilizar el plan operativo anual.
La herramienta de Business Intelligence dedicada a la inclusión y seguimiento del plan estratégico en una empresa es el Cuadro de Mando Integral o Balanced Scorecard.
Si no está familiarizado con el concepto de Plan Estratégico, puede resultarle útil, además, examinar las siguientes definiciones:
* Plan director
* Plan operativo anual (POA)
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Plan operativo anual (POA)
El plan operativo anual es un documento formal en el que se enumeran, por parte de los responsables de una entidad facturadora (compañía, departamento, sucursal u oficina) los objetivos a conseguir durante el presente ejercicio.
El plan operativo anual debe estar perfectamente alineado con el plan estratégico de la empresa, y su especificación sirve para concretar, además de los objetivos a conseguir cada año, la manera de alcanzarlos que debe seguir cada entidad (departamento, sucursal, oficina...).
Por ejemplo, ante un objetivo estratégico global del tipo: "Conseguir una facturación de 1.000.000 € antes de 2.010.", un plan operativo debe desglosar esa cifra para cada año: "Conseguir una facturación de 600.000 € en el año 2.008", "Conseguir una facturación de 800.000 € en el año 2.009", "Conseguir una facturación de 1.000.000 € en el año 2.010".
Además, el plan operativo anual debe desglosar los objetivos para cada entidad facturadora: "La oficina de Madrid debe alcanzar una cifra de ventas de 200.000 € en el año 2.008", "La oficina de Valencia debe alcanzar una cifra de ventas de 150.000 € en el año 2.008", etc...
Incluso, dentro de cada sucursal o departamento es posible hallar una predicción del volumen esperado de ventas para cada mes del año (teniendo en cuenta la estacionalidad del producto o las oscilaciones que ha experimentado el mercado en años anteriores).
Por tanto, es común en un plan operativo anual disponer, para cada mes (desde enero a diciembre), de un valor POA para cada objetivo. A medida que va avanzando el año es posible fijar el valor real que se ha alcanzado y, por tanto, hallar posibles errores o desviaciones en el plan.
Por ejemplo, para el caso del objetivo:
"La oficina de Madrid debe alcanzar una cifra de ventas de 200.000 € en el año 2.008"
Mes POA Acumulado Real Acumulado Desviación
Enero 15.000 € 16.292 € 1.292 €
Febrero 30.000 € 26.488 € -3.512 €
Marzo 50.000 € 41.351 € -8.649 €
Abril 70.000 € 60.134 € -9.866 €
Mayo 85.000 € 74.011 € -10.989 €
Junio 100.000 € 88.506 € -11.494 €
Julio 120.000 € (-) (-)
Agosto 150.000 €
Septiembre 170.000 €
Octubre 180.000 €
Noviembre 190.000 €
Diciembre 200.000 €
Esto es preciso hacerlo, naturalmente, para cada objetivo anual de cada entidad.
Lo más importante de este modelo es que, mediante un correcto seguimiento del plan operativo anual, se puede hallar no sólo las desviaciones en el plan, sino también el motivo de su origen. La herramienta de Business Intelligence dedicada a este fin es una de las más implantadas en las empresas modernas: el Cuadro de Mando Integral o Balanced Scorecard.
Si no está familiarizado con el concepto de Plan Operativo Anual, puede resultarle útil, además, examinar las siguientes definiciones:
* Plan director
* Plan estratégico
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Plataformas de Business Intelligence
A continuación mostramos las principales plataformas de Business Intelligence con las que trabaja nuestra empresa. Si desea un listado más exhaustivo de productos puede consultar aquí.
Pentaho
Microsoft
Oracle
QlikView
Microstrategy
Ejemplos prácticos de Business Intelligence
A continuación mostramos una serie de ejemplos reales (resumidos) de Business Intelligence:
Empresa conservera
Este caso práctico se refiere a uno de las mayores empresas conserveras de Galicia, con presencia internacional, más de 500 empleados y cerca de 100.000.000 € de facturación.
A pesar de que en el sector conservero es bien conocida la estacionalidad de las ventas (el consumo de atún en conserva se dispara en verano, debido a su participación en las ensaladas) y en diciembre (con motivo de la navidad), esta empresa no había sido capaz de optimizar la cantidad de producto finalizado que debía almacenar en stock para maximizar sus beneficios.
Mediante la implantación de un sistema de soporte a la decisión (DSS), y tras el análisis minucioso de los datos históricos que guardaba la compañía, resultó posible rediseñar todo el proceso logístico y de almacenamiento productivo hasta el punto de incrementar la rentabilidad económica de la misma (independientemente de la producción y la demanda) en un 10%.
Cadena de supermercados
Una conocida cadena de supermercados gallegos ha recurrido a un sistema de Business Intelligence para averiguar cual era el perfil de sus clientes más rentables e intentar hacer lo posible para fidelizarlos.
Para ello, una de las primeras acciones que llevó a cabo fue la creacción de una "tarjeta descuento", que vinculara a los clientes con el club del supermercado. Para poder optar a esta tarjeta, cada cliente debía facilitar sus datos personales básicos (edad, sexo, origen...) y unos datos complementarios de sus preferencias. A cambio recibía descuentos eventuales en sus compras.
Tras haber acumulado una relevante cantidad de datos, llegó el momento de extraer la información requerida mediante un sistema de soporte a la decisión. Entre las rarezas obtenidas en los resultados, cabe destacar que el perfil ideal de cada cliente tenía sustanciales diferencias en función de la ubicación geográfica, a pesar de que el límite del análisis era dentro de la propia Galicia.
Cooperativa lechera
En una cooperativa láctea de origen gallego, cuyos productos se publicitan en TV a nivel nacional, se habían desatado las alarmas debido a las grandes desviaciones económicas existentes, cada año, entre los parámetros estimados en enero y los resultados analizados doce meses más tarde.
Finalmente, para resolver el problema y potenciar al máximo sus sistemas informáticos tradicionales, la cooperativa decidió implantar un cuadro de mando integral (Balanced Scorecard) y realizar un seguimiento minucioso de sus objetivos estratégicos. Tras ocho meses desde la puesta en producción del sistema, consiguieron encontrar el origen de las desviaciones y tomar las acciones oportunas para enderezar la trayectoria operativa de la empresa.
Por otro lado, y como efecto colateral estrechamente relacionado, el sistema ha permitido analizar el impacto en las ventas de cada una de sus campañas publicitarias. Basándose la información contenida en sus propias bases de datos, la cooperativa ha conseguido desde entonces adaptar su publicidad para incrementar en un 8% su cuota de mercado.
Operador de telecomunicaciones
Este ejemplo hace referencia a uno de los mayores operadores de telecomunicación del mundo, con más de 91 millones de clientes en 220 países de los cinco continentes. Esta organización cuenta con 190.000 empleados y ofrece una gama completa de servicios de telecomunicaciones: telefonía local, internacional y móvil; internet y multimedia; transporte de datos; y difusión de TV por cable.
En los últimos años, la empresa ha venido utilizando los sistemas informáticos como un arma estratégica fundamental en la batalla entre operadores de telecomunicaciones. El objetivo de una de sus principales iniciativas ha sido reducir las inconsistencias en los datos y compartir la información de manera más eficaz entre las diferentes áreas de negocio, implementando en toda la organización estándares en el campo del software de gestión.
Peluquería local
Una peluquería de Santiago de Compostela llevaba dos años abierta al público. Durante todo ese tiempo, las dueñas, dos chicas jóvenes y emprendedoras, habían trabajado todos los días de la semana (a excepción, naturalmente, de los domingos) para sacar adelante su negocio.
Al haber estabilizado su cartera de clientes decidieron descansar un día más a la semana. Su primera opción fue cerrar los lunes, como las demás peluquerías de la zona. No obstante, decidieron basar su decisión en la información histórica que habían recogido en su pequeña aplicación de citas.
Los resultados obtenidos fueron contudentes, ya que el lunes resultó ser el cuarto día más rentable de la semana (probablemente como consecuencia del cierre de la competencia). Finalmente el día elegido para descansar fue el martes.
¿Cómo saber si su empresa necesita una solución BI?
Recuerde que el objetivo del Business Intelligence es colocar todos los datos al alcance de toda la empresa, proporcionando las herramientas para extraerlos de las aplicaciones, conferirles un formato estándar, y posteriormente almacenarlos en un repositorio optimizado para una entrega de la información rápida y resumida que haga posible un análisis muy detallado.
Para realizar un diagnóstico instantáneo de su empresa, sólo tiene que responder al siguiente cuestionario:
* ¿Está seguro de qué productos y clientes son los más importantes para su empresa?
Sí No N/a
* ¿Tiene problemas para crear una visión clara de toda su organización?
Sí No N/a
* ¿Sabe si está perdiendo cuota de mercado con respecto a su competencia?
Sí No N/a
* ¿Ha perdido oportunidades de negocio por recibir información atrasada?
Sí No N/a
* ¿Dedica horas extras a analizar documentos e informes?
Sí No N/a
* ¿Tiene informes de varios sistemas operacionales que no concuerdan?
Sí No N/a
* ¿Dispone de alguna ventaja competitiva clara con respecto a las demás empresas de su sector?
Sí No N/a
* ¿Sabe con certeza si su gente está alcanzando los objetivos planificados?
Sí No N/a
Si al menos la mitad de las respuestas han sido afirmativas, su empresa puede encontrar importantes beneficios al implantar un sistema de Business Intelligence. En caso contrario, puede consultar aquí los motivos por los que quizá llegue a interesarle en un futuro.
Razones por las que invertir en Business Intelligence
Según un artículo de Gartner Research, la falta de conocimiento es la mayor amenaza para las empresas modernas. Para ello, apuntan, “el objetivo del Business Intelligence es eliminar las conjeturas y la ignorancia en los ambientes empresariales, aprovechando los vastos volúmenes de datos cuantitativos que las empresas recolectan todos los días en sus diversas aplicaciones corporativas”.
* BI como solución tecnológica
* Centralizar, depurar y afianzar los datos. Las tecnologías de BI permiten reunir, normalizar y centralizar toda la información de la empresa, mediante un almacén de datos, permitiendo así su explotación sin esfuerzo. De esta forma, los departamentos comercial, operativo y financiero basan las decisiones estratégicas en la misma información.
* Descubrir información no evidente para las aplicaciones actuales. En el día a día de las aplicaciones de gestión se pueden esconder pautas de comportamiento, tendencias, evoluciones del mercado, cambios en el consumo o en la producción, que resulta prácticamente imposible reconocer sin el software adecuado. Es lo que se puede calificar como extraer información de los datos, y conocimiento de la información.
* Optimizar el rendimiento de los sistemas. Las plataformas de BI se diseñan para perfeccionar al máximo las consultas de alto nivel, realizando las transformaciones oportunas a cada sistema (OLTP - OLAP), y liberando los servidores operacionales.
* BI como ventaja competitiva
* Seguimiento real del plan estratégico. Si su empresa dispone de plan estratégico, el business intelligence le permite, mediante un cuadro de mando, crear, manejar y monitorizar las métricas y los objetivos estratégicos propuestos en ese plan, para poder detectar a tiempo las desviaciones, adoptando las acciones oportunas para corregirlas.
* Aprender de errores pasados. Al historizar los datos relevantes, una aplicación de BI permite que una empresa aprenda de su historia y de sus mejores prácticas, y que pueda evitar tropezarse de nuevo con los mismos errores del pasado.
* Mejorar la competitividad. Según la consultora internacional Gartner, 7 de cada 10 compañías realizan análisis sobre sus datos de forma diaria, o incluso instantánea, en el 2.006. Este mecanismo les permite maximizar su rentabilidad. La acuciante tendencia a explotar la información marca cada vez más la diferencia en los sectores.
* Obtener el verdadero valor de las aplicaciones de gestión. Durante los últimos años, las empresas se han embarcado en la construcción de estas aplicaciones clave para sus negocios. Sin embargo, no siempre han sabido aprovechar todo el potencial que les pueden proporcionar: cuentas de resultados, cash-flow, etc… Con el business intelligence, todos los empleados, desde el director general hasta el último analista, tienen acceso a información adecuada, integrada y actualizada
http://www.sinnexus.com/business_intelligence/sistemas_informacion_ejecutiva.aspx
Sistemas de Información Ejecutiva (EIS)
Un Sistema de Información para Ejecutivos o Sistema de Información Ejecutiva es una herramienta software, basada en un DSS, que provee a los gerentes de un acceso sencillo a información interna y externa de su compañía, y que es relevante para sus factores clave de éxito.
La finalidad principal es que el ejecutivo tenga a su disposición un panorama completo del estado de los indicadores de negocio que le afectan al instante, manteniendo también la posibilidad de analizar con detalle aquellos que no estén cumpliendo con las expectativas establecidas, para determinar el plan de acción más adecuado.
Sistemas de Información Ejecutiva (EIS)
De forma más pragmática, se puede definir un EIS como una aplicación informática que muestra informes y listados (query & reporting) de las diferentes áreas de negocio, de forma consolidada, para facilitar la monitorización de la empresa o de una unidad de la misma.
El EIS se caracteriza por ofrecer al ejecutivo un acceso rápido y efectivo a la información compartida, utilizando interfaces gráficas visuales e intutivas. Suele incluir alertas e informes basados en excepción, así como históricos y análisis de tendencias. También es frecuente que permita la domiciliación por correo de los informes más relevantes.
A través de esta solución se puede contar con un resumen del comportamiento de una organización o área específica, y poder compararla a través del tiempo. Es posible, además, ajustar la visión de la información a la teoría de Balanced Scorecard o Cuadro de Mando Integral impulsada por Norton y Kaplan, o bien a cualquier modelo estratégico de indicadores que maneje la compañía.
Si no está familiarizado con el concepto de Sistema de Información Ejecutiva, puede resultarle útil, además, examinar las siguientes definiciones:
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Datamining
* Datamart
* Datawarehouse
Datamart
Un Datamart es una base de datos departamental, especializada en el almacenamiento de los datos de un área de negocio específica. Se caracteriza por disponer la estructura óptima de datos para analizar la información al detalle desde todas las perspectivas que afecten a los procesos de dicho departamento. Un datamart puede ser alimentado desde los datos de un datawarehouse, o integrar por si mismo un compendio de distintas fuentes de información.
Por tanto, para crear el datamart de un área funcional de la empresa es preciso encontrar la estructura óptima para el análisis de su información, estructura que puede estar montada sobre una base de datos OLTP, como el propio datawarehouse, o sobre una base de datos OLAP. La designación de una u otra dependerá de los datos, los requisitos y las características específicas de cada departamento. De esta forma se pueden plantear dos tipos de datamarts:
Datamart OLAP
Se basan en los populares cubos OLAP, que se construyen agregando, según los requisitos de cada área o departamento, las dimensiones y los indicadores necesarios de cada cubo relacional. El modo de creación, explotación y mantenimiento de los cubos OLAP es muy heterogéneo, en función de la herramienta final que se utilice.
Datamart OLTP
Pueden basarse en un simple extracto del datawarehouse, no obstante, lo común es introducir mejoras en su rendimiento (las agregaciones y los filtrados suelen ser las operaciones más usuales) aprovechando las características particulares de cada área de la empresa. Las estructuras más comunes en este sentido son las tablas report, que vienen a ser fact-tables reducidas (que agregan las dimensiones oportunas), y las vistas materializadas, que se construyen con la misma estructura que las anteriores, pero con el objetivo de explotar la reescritura de queries (aunque sólo es posibles en algunos SGBD avanzados, como Oracle).
Los datamarts que están dotados con estas estructuras óptimas de análisis presentan las siguientes ventajas:
* Poco volumen de datos
* Mayor rapidez de consulta
* Consultas SQL y/o MDX sencillas
* Validación directa de la información
* Facilidad para la historización de los datos
Si no está familiarizado con el concepto de datamart, puede resultarle útil, además, examinar las siguientes definiciones:
* Datawarehouse
* Sistemas de Soporte a la Decisión (DSS)
* Bases de datos OLTP y OLAP
* Datamining
Datawarehouse
Un Datawarehouse es una base de datos corporativa que se caracteriza por integrar y depurar información de una o más fuentes distintas, para luego procesarla permitiendo su análisis desde infinidad de pespectivas y con grandes velocidades de respuesta. La creación de un datawarehouse representa en la mayoría de las ocasiones el primer paso, desde el punto de vista técnico, para implantar una solución completa y fiable de Business Intelligence.
La ventaja principal de este tipo de bases de datos radica en las estructuras en las que se almacena la información (modelos de tablas en estrella, en copo de nieve, cubos relacionales... etc). Este tipo de persistencia de la información es homogénea y fiable, y permite la consulta y el tratamiento jerarquizado de la misma (siempre en un entorno diferente a los sistemas operacionales).
El término Datawarehouse fue acuñado por primera vez por Bill Inmon, y se traduce literalmente como almacén de datos. No obstante, y como cabe suponer, es mucho más que eso. Según definió el propio Bill Inmon, un datawarehouse se caracteriza por ser:
* Integrado: los datos almacenados en el datawarehouse deben integrarse en una estructura consistente, por lo que las inconsistencias existentes entre los diversos sistemas operacionales deben ser eliminadas. La información suele estructurarse también en distintos niveles de detalle para adecuarse a las distintas necesidades de los usuarios.
* Temático: sólo los datos necesarios para el proceso de generación del conocimiento del negocio se integran desde el entorno operacional. Los datos se organizan por temas para facilitar su acceso y entendimiento por parte de los usuarios finales. Por ejemplo, todos los datos sobre clientes pueden ser consolidados en una única tabla del datawarehouse. De esta forma, las peticiones de información sobre clientes serán más fáciles de responder dado que toda la información reside en el mismo lugar.
* Histórico: el tiempo es parte implícita de la información contenida en un datawarehouse. En los sistemas operacionales, los datos siempre reflejan el estado de la actividad del negocio en el momento presente. Por el contrario, la información almacenada en el datawarehouse sirve, entre otras cosas, para realizar análisis de tendencias. Por lo tanto, el datawarehouse se carga con los distintos valores que toma una variable en el tiempo para permitir comparaciones.
* No volátil: el almacén de información de un datawarehouse existe para ser leído, pero no modificado. La información es por tanto permanente, significando la actualización del datawarehouse la incorporación de los últimos valores que tomaron las distintas variables contenidas en él sin ningún tipo de acción sobre lo que ya existía.
Otra característica del datawarehouse es que contiene metadatos, es decir, datos sobre los datos. Los metadatos permiten saber la procedencia de la información, su periodicidad de refresco, su fiabilidad, forma de cálculo... etc.
Los metadatos serán los que permiten simplificar y automatizar la obtención de la información desde los sistemas operacionales a los sistemas informacionales.
Los objetivos que deben cumplir los metadatos, según el colectivo al que va dirigido, son:
* Dar soporte al usuario final, ayudándole a acceder al datawarehouse con su propio lenguaje de negocio, indicando qué información hay y qué significado tiene. Ayudar a construir consultas, informes y análisis, mediante herramientas de Business Intelligence como DSS, EIS o CMI.
* Dar soporte a los responsables técnicos del datawarehouse en aspectos de auditoría, gestión de la información histórica, administración del datawarehouse, elaboración de programas de extracción de la información, especificación de las interfaces para la realimentación a los sistemas operacionales de los resultados obtenidos... etc.
Por último, destacar que para comprender íntegramente el concepto de datawarehouse, es importante entender cual es el proceso de construcción del mismo, denominado ETL (Extracción, Transformación y Carga), a partir de los sistemas operaciones de una compañía:
* Extracción: obtención de información de las distintas fuentes tanto internas como externas.
* Transformación: filtrado, limpieza, depuración, homogeneización y agrupación de la información.
* Carga: organización y actualización de los datos y los metadatos en la base de datos.
Una de las claves del éxito en la construcción de un datawarehouse es el desarrollo de forma gradual, seleccionando a un departamento usuario como piloto y expandiendo progresivamente el almacén de datos a los demás usuarios. Por ello es importante elegir este usuario inicial o piloto, siendo importante que sea un departamento con pocos usuarios, en el que la necesidad de este tipo de sistemas es muy alta y se puedan obtener y medir resultados a corto plazo.
Principales aportaciones de un datawarehouse
* Proporciona una herramienta para la toma de decisiones en cualquier área funcional, basándose en información integrada y global del negocio.
* Facilita la aplicación de técnicas estadísticas de análisis y modelización para encontrar relaciones ocultas entre los datos del almacén; obteniendo un valor añadido para el negocio de dicha información.
* Proporciona la capacidad de aprender de los datos del pasado y de predecir situaciones futuras en diversos escenarios.
* Simplifica dentro de la empresa la implantación de sistemas de gestión integral de la relación con el cliente.
* Supone una optimización tecnológica y económica en entornos de Centro de Información, estadística o de generación de informes con retornos de la inversión espectaculares.
Si no está familiarizado con el concepto de datawarehouse, puede resultarle útil, además, examinar las siguientes definiciones:
* Datamart
* Datamining
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Bases de datos OLTP y OLAP
OLTP - On-Line Transactional Processing
Los sistemas OLTP son bases de datos orientadas al procesamiento de transacciones. Una transacción genera un proceso atómico (que debe ser validado con un commit, o invalidado con un rollback), y que puede involucrar operaciones de inserción, modificación y borrado de datos. El proceso transaccional es típico de las bases de datos operacionales.
* El acceso a los datos está optimizado para tareas frecuentes de lectura y escritura. (Por ejemplo, la enorme cantidad de transacciones que tienen que soportar las BD de bancos o hipermercados diariamente).
* Los datos se estructuran según el nivel aplicación (programa de gestión a medida, ERP o CRM implantado, sistema de información departamental...).
* Los formatos de los datos no son necesariamente uniformes en los diferentes departamentos (es común la falta de compatibilidad y la existencia de islas de datos).
* El historial de datos suele limitarse a los datos actuales o recientes.
OLAP - On-Line Analytical Processing
Los sistemas OLAP son bases de datos orientadas al procesamiento analítico. Este análisis suele implicar, generalmente, la lectura de grandes cantidades de datos para llegar a extraer algún tipo de información útil: tendencias de ventas, patrones de comportamiento de los consumidores, elaboración de informes complejos… etc. Este sistema es típico de los datamarts.
* El acceso a los datos suele ser de sólo lectura. La acción más común es la consulta, con muy pocas inserciones, actualizaciones o eliminaciones.
* Los datos se estructuran según las áreas de negocio, y los formatos de los datos están integrados de manera uniforme en toda la organización.
* El historial de datos es a largo plazo, normalmente de dos a cinco años.
* Las bases de datos OLAP se suelen alimentar de información procedente de los sistemas operacionales existentes, mediante un proceso de extracción, transformación y carga (ETL).
Persistencia ROLAP, MOLAP, HOLAP
Datamining (Minería de datos)
El datamining (minería de datos), es el conjunto de técnicas y tecnologías que permiten explorar grandes bases de datos, de manera automática o semiautomática, con el objetivo de encontrar patrones repetitivos, tendencias o reglas que expliquen el comportamiento de los datos en un determinado contexto.
Básicamente, el datamining surge para intentar ayudar a comprender el contenido de un repositorio de datos. Con este fin, hace uso de prácticas estadísticas y, en algunos casos, de algoritmos de búsqueda próximos a la Inteligencia Artificial y a las redes neuronales.
De forma general, los datos son la materia prima bruta. En el momento que el usuario les atribuye algún significado especial pasan a convertirse en información. Cuando los especialistas elaboran o encuentran un modelo, haciendo que la interpretación que surge entre la información y ese modelo represente un valor agregado, entonces nos referimos al conocimiento. Vea más diferencias entre datos, información y conocimiento.
Aunque en datamining cada caso concreto puede ser radicalmente distinto al anterior, el proceso común a todos ellos se suele componer de cuatro etapas principales:
* Determinación de los objetivos. Trata de la delimitación de los objetivos que el cliente desea bajo la orientación del especialista en data mining.
* Preprocesamiento de los datos. Se refiere a la selección, la limpieza, el enriquecimiento, la reducción y la transformación de las bases de datos. Esta etapa consume generalmente alrededor del setenta por ciento del tiempo total de un proyecto de data mining.
* Determinación del modelo. Se comienza realizando unos análisis estadísticos de los datos, y después se lleva a cabo una visualización gráfica de los mismos para tener una primera aproximación. Según los objetivos planteados y la tarea que debe llevarse a cabo, pueden utilizarse algoritmos desarrollados en diferentes áreas de la Inteligencia Artificial.
* Análisis de los resultados. Verifica si los resultados obtenidos son coherentes y los coteja con los obtenidos por los análisis estadísticos y de visualización gráfica. El cliente determina si son novedosos y si le aportan un nuevo conocimiento que le permita considerar sus decisiones.
Carga de trabajo en las fases de un proyecto de datamining
En resumen, el datamining se presenta como una tecnología emergente, con varias ventajas: por un lado, resulta un buen punto de encuentro entre los investigadores y las personas de negocios; por otro, ahorra grandes cantidades de dinero a una empresa y abre nuevas oportunidades de negocios. Además, no hay duda de que trabajar con esta tecnología implica cuidar un sinnúmero de detalles debido a que el producto final involucra "toma de decisiones".
En el artículo Data Mining: Torturando a los datos hasta que confiesen, Luis Carlos Molina proporciona una visión muy clarificadora sobre la minería de datos, incluyendo interesantes ejemplos de aplicaciones de la misma. Recomendamos su lectura.
Si no está familiarizado con el concepto de Datamining, puede resultarle útil, además, examinar las siguientes definiciones:
* Datamart
* Datawarehouse
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Plan director
El plan director es un documento formal en el que se intenta plasmar, por parte de los responsables de una compañía (directivos, gerentes, empresarios...) cual será la situación de la misma dentro un período de tiempo, generalmente de 5 a 10 años.
El plan director es cualitativo: define las futuras cualidades (no las cantidades) de la compañía, finalista: indica lo que se quiere conseguir, pero no cómo conseguirlo, y atemporal: no establece plazos para alcanzar lo propuesto, a excepción de la propia vigencia del plan.
El plan director recoge tres puntos principales:
* Productos y servicios: describe el catálogo de productos y/o servicios que ofrecerá la compañía a sus clientes, y en los que deben basarse sus ingresos en el medio y en el largo plazo. Esta enumeración debería ser visionaria, completa y realista.
* Mercado potencial: describe el perfil de los clientes que tendrán acceso a los productos que ofrece la compañía (público final, empresas...), indicando el segmento más aproximado y sus características principales.
* Ventajas competitivas: describe las características que deben situar a la compañía en una situación ventajosa con respecto a su competencia. Estas ventajas deben ser, ante todo, difíciles de imitar y sostenibles en el tiempo. Aprenda más sobre ventajas competitivas aquí.
En la práctica, el plan director se suele condensar en un documento escrito (generalmente de menos de 10 páginas) que no es más una instantánea del futuro que los directivos quieren para su compañía.
El plan director es, por tanto, el eje central sobre el que se articularán otros documentos de vital importancia para la empresa, como el plan estratégico o el plan operativo anual.
Si no está familiarizado con el concepto de Plan Director, puede resultarle útil, además, examinar las siguientes definiciones:
* Plan estratégico
* Plan operativo anual (POA)
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Plan estratégico
El plan estratégico es un documento formal en el que se intenta plasmar, por parte de los responsables de una compañía (directivos, gerentes, empresarios...) cual será la estrategia de la misma durante un período de tiempo, generalmente de 3 a 5 años.
El plan estratégico es cuantitativo: establece las cifras que debe alcanzar la compañía, manifiesto: describe el modo de conseguirlas, perfilando la estrategia a seguir, y temporal: indica los plazos de los que dispone la compañía para alcanzar esas cifras.
El plan estratégico recoge tres puntos principales:
* Objetivos: un objetivo es un hecho que no depende directamente de la compañía, y que está formado por la ecuación: cantidad a alcanzar + plazo para conseguirlo. El verbo asociado a un objetivo es siempre conseguir:
- Conseguir una facturación de 1.000.000 € antes de 2.010.
- Conseguir incrementar la rentabilidad económica un 10% durante 2.008.
- Conseguir una cuota de mercado del 40% antes de Noviembre de 2.007.
Los objetivos del tipo: "Optimizar los recursos empleados" o "Maximizar el beneficio durante este año" no son válidos, ya que no indican una cantidad a alcanzar y un plazo para conseguirlo. Tampoco sería correcto el objetivo: "Gastar 10.000 € en renovar el equipamiento informático durante Febrero", ya que eso depende directamente de la compañía.
* Políticas: una política es una conducta que marca la compañía, y que sirve para describir su actitud, continuada en el tiempo, a la hora de enfrentarse a situaciones de diversa índole. El verbo asociado a una política es siempre establecer:
- Establecer una política de cobros a 30 días y de pagos a 90 días.
- Establecer una política de contratación para titulados con al menos 2 años de experiencia.
- Establecer una política retributiva basada en un 80% de retribución fija y 20% retribución variable.
Existen muchos parámetros sobre los que se puede establecer la actitud de la empresa, como la política de tesorería, la política de atención al cliente, la política de recursos humanos, la política de imagen corporativa, la política de reparto de dividendos...
* Acciones: una acción es un hecho que depende directamente de la compañía, y que generalmente se lleva a cabo para facilitar la consecución de los objetivos, fomentar el respeto a las políticas impuestas, o vertebrar la estrategia global de la empresa. El verbo asociado a una acción es siempre realizar:
- Asistir a los principales congresos del sector para mejorar la formación interna.
- Lanzar una campaña de publicidad en TV y periódicos para promocionar el nuevo producto.
- Elaborar un manual de procedimientos interno que agilice la incorporación de nuevos miembros.
Las acciones se suelen agrupar de tal manera que sea sencillo identificar su origen y, a su vez, su finalidad. Así se pueden clasificar como dependientes de un objetivo estratégico, de una política de empresa o simplemente como acciones puntuales.
En la práctica, el plan estratégico se suele sintetizar en un documento escrito (generalmente de menos de 20 páginas), concretando así las líneas estratégicas generales a seguir por la compañía.
El plan estratégico describe, por tanto, una manera de conseguir las cualidades organizacionales enumeradas en el plan director. No obstante, el plan estratégico no suele estar lo suficientemente detallado como para actuar a nivel departamental. Para ello, se suele utilizar el plan operativo anual.
La herramienta de Business Intelligence dedicada a la inclusión y seguimiento del plan estratégico en una empresa es el Cuadro de Mando Integral o Balanced Scorecard.
Si no está familiarizado con el concepto de Plan Estratégico, puede resultarle útil, además, examinar las siguientes definiciones:
* Plan director
* Plan operativo anual (POA)
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Plan operativo anual (POA)
El plan operativo anual es un documento formal en el que se enumeran, por parte de los responsables de una entidad facturadora (compañía, departamento, sucursal u oficina) los objetivos a conseguir durante el presente ejercicio.
El plan operativo anual debe estar perfectamente alineado con el plan estratégico de la empresa, y su especificación sirve para concretar, además de los objetivos a conseguir cada año, la manera de alcanzarlos que debe seguir cada entidad (departamento, sucursal, oficina...).
Por ejemplo, ante un objetivo estratégico global del tipo: "Conseguir una facturación de 1.000.000 € antes de 2.010.", un plan operativo debe desglosar esa cifra para cada año: "Conseguir una facturación de 600.000 € en el año 2.008", "Conseguir una facturación de 800.000 € en el año 2.009", "Conseguir una facturación de 1.000.000 € en el año 2.010".
Además, el plan operativo anual debe desglosar los objetivos para cada entidad facturadora: "La oficina de Madrid debe alcanzar una cifra de ventas de 200.000 € en el año 2.008", "La oficina de Valencia debe alcanzar una cifra de ventas de 150.000 € en el año 2.008", etc...
Incluso, dentro de cada sucursal o departamento es posible hallar una predicción del volumen esperado de ventas para cada mes del año (teniendo en cuenta la estacionalidad del producto o las oscilaciones que ha experimentado el mercado en años anteriores).
Por tanto, es común en un plan operativo anual disponer, para cada mes (desde enero a diciembre), de un valor POA para cada objetivo. A medida que va avanzando el año es posible fijar el valor real que se ha alcanzado y, por tanto, hallar posibles errores o desviaciones en el plan.
Por ejemplo, para el caso del objetivo:
"La oficina de Madrid debe alcanzar una cifra de ventas de 200.000 € en el año 2.008"
Mes POA Acumulado Real Acumulado Desviación
Enero 15.000 € 16.292 € 1.292 €
Febrero 30.000 € 26.488 € -3.512 €
Marzo 50.000 € 41.351 € -8.649 €
Abril 70.000 € 60.134 € -9.866 €
Mayo 85.000 € 74.011 € -10.989 €
Junio 100.000 € 88.506 € -11.494 €
Julio 120.000 € (-) (-)
Agosto 150.000 €
Septiembre 170.000 €
Octubre 180.000 €
Noviembre 190.000 €
Diciembre 200.000 €
Esto es preciso hacerlo, naturalmente, para cada objetivo anual de cada entidad.
Lo más importante de este modelo es que, mediante un correcto seguimiento del plan operativo anual, se puede hallar no sólo las desviaciones en el plan, sino también el motivo de su origen. La herramienta de Business Intelligence dedicada a este fin es una de las más implantadas en las empresas modernas: el Cuadro de Mando Integral o Balanced Scorecard.
Si no está familiarizado con el concepto de Plan Operativo Anual, puede resultarle útil, además, examinar las siguientes definiciones:
* Plan director
* Plan estratégico
* Cuadro de Mando Integral
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Plataformas de Business Intelligence
A continuación mostramos las principales plataformas de Business Intelligence con las que trabaja nuestra empresa. Si desea un listado más exhaustivo de productos puede consultar aquí.
Pentaho
Microsoft
Oracle
QlikView
Microstrategy
Ejemplos prácticos de Business Intelligence
A continuación mostramos una serie de ejemplos reales (resumidos) de Business Intelligence:
Empresa conservera
Este caso práctico se refiere a uno de las mayores empresas conserveras de Galicia, con presencia internacional, más de 500 empleados y cerca de 100.000.000 € de facturación.
A pesar de que en el sector conservero es bien conocida la estacionalidad de las ventas (el consumo de atún en conserva se dispara en verano, debido a su participación en las ensaladas) y en diciembre (con motivo de la navidad), esta empresa no había sido capaz de optimizar la cantidad de producto finalizado que debía almacenar en stock para maximizar sus beneficios.
Mediante la implantación de un sistema de soporte a la decisión (DSS), y tras el análisis minucioso de los datos históricos que guardaba la compañía, resultó posible rediseñar todo el proceso logístico y de almacenamiento productivo hasta el punto de incrementar la rentabilidad económica de la misma (independientemente de la producción y la demanda) en un 10%.
Cadena de supermercados
Una conocida cadena de supermercados gallegos ha recurrido a un sistema de Business Intelligence para averiguar cual era el perfil de sus clientes más rentables e intentar hacer lo posible para fidelizarlos.
Para ello, una de las primeras acciones que llevó a cabo fue la creacción de una "tarjeta descuento", que vinculara a los clientes con el club del supermercado. Para poder optar a esta tarjeta, cada cliente debía facilitar sus datos personales básicos (edad, sexo, origen...) y unos datos complementarios de sus preferencias. A cambio recibía descuentos eventuales en sus compras.
Tras haber acumulado una relevante cantidad de datos, llegó el momento de extraer la información requerida mediante un sistema de soporte a la decisión. Entre las rarezas obtenidas en los resultados, cabe destacar que el perfil ideal de cada cliente tenía sustanciales diferencias en función de la ubicación geográfica, a pesar de que el límite del análisis era dentro de la propia Galicia.
Cooperativa lechera
En una cooperativa láctea de origen gallego, cuyos productos se publicitan en TV a nivel nacional, se habían desatado las alarmas debido a las grandes desviaciones económicas existentes, cada año, entre los parámetros estimados en enero y los resultados analizados doce meses más tarde.
Finalmente, para resolver el problema y potenciar al máximo sus sistemas informáticos tradicionales, la cooperativa decidió implantar un cuadro de mando integral (Balanced Scorecard) y realizar un seguimiento minucioso de sus objetivos estratégicos. Tras ocho meses desde la puesta en producción del sistema, consiguieron encontrar el origen de las desviaciones y tomar las acciones oportunas para enderezar la trayectoria operativa de la empresa.
Por otro lado, y como efecto colateral estrechamente relacionado, el sistema ha permitido analizar el impacto en las ventas de cada una de sus campañas publicitarias. Basándose la información contenida en sus propias bases de datos, la cooperativa ha conseguido desde entonces adaptar su publicidad para incrementar en un 8% su cuota de mercado.
Operador de telecomunicaciones
Este ejemplo hace referencia a uno de los mayores operadores de telecomunicación del mundo, con más de 91 millones de clientes en 220 países de los cinco continentes. Esta organización cuenta con 190.000 empleados y ofrece una gama completa de servicios de telecomunicaciones: telefonía local, internacional y móvil; internet y multimedia; transporte de datos; y difusión de TV por cable.
En los últimos años, la empresa ha venido utilizando los sistemas informáticos como un arma estratégica fundamental en la batalla entre operadores de telecomunicaciones. El objetivo de una de sus principales iniciativas ha sido reducir las inconsistencias en los datos y compartir la información de manera más eficaz entre las diferentes áreas de negocio, implementando en toda la organización estándares en el campo del software de gestión.
Peluquería local
Una peluquería de Santiago de Compostela llevaba dos años abierta al público. Durante todo ese tiempo, las dueñas, dos chicas jóvenes y emprendedoras, habían trabajado todos los días de la semana (a excepción, naturalmente, de los domingos) para sacar adelante su negocio.
Al haber estabilizado su cartera de clientes decidieron descansar un día más a la semana. Su primera opción fue cerrar los lunes, como las demás peluquerías de la zona. No obstante, decidieron basar su decisión en la información histórica que habían recogido en su pequeña aplicación de citas.
Los resultados obtenidos fueron contudentes, ya que el lunes resultó ser el cuarto día más rentable de la semana (probablemente como consecuencia del cierre de la competencia). Finalmente el día elegido para descansar fue el martes.
¿Cómo saber si su empresa necesita una solución BI?
Recuerde que el objetivo del Business Intelligence es colocar todos los datos al alcance de toda la empresa, proporcionando las herramientas para extraerlos de las aplicaciones, conferirles un formato estándar, y posteriormente almacenarlos en un repositorio optimizado para una entrega de la información rápida y resumida que haga posible un análisis muy detallado.
Para realizar un diagnóstico instantáneo de su empresa, sólo tiene que responder al siguiente cuestionario:
* ¿Está seguro de qué productos y clientes son los más importantes para su empresa?
Sí No N/a
* ¿Tiene problemas para crear una visión clara de toda su organización?
Sí No N/a
* ¿Sabe si está perdiendo cuota de mercado con respecto a su competencia?
Sí No N/a
* ¿Ha perdido oportunidades de negocio por recibir información atrasada?
Sí No N/a
* ¿Dedica horas extras a analizar documentos e informes?
Sí No N/a
* ¿Tiene informes de varios sistemas operacionales que no concuerdan?
Sí No N/a
* ¿Dispone de alguna ventaja competitiva clara con respecto a las demás empresas de su sector?
Sí No N/a
* ¿Sabe con certeza si su gente está alcanzando los objetivos planificados?
Sí No N/a
Si al menos la mitad de las respuestas han sido afirmativas, su empresa puede encontrar importantes beneficios al implantar un sistema de Business Intelligence. En caso contrario, puede consultar aquí los motivos por los que quizá llegue a interesarle en un futuro.
Razones por las que invertir en Business Intelligence
Según un artículo de Gartner Research, la falta de conocimiento es la mayor amenaza para las empresas modernas. Para ello, apuntan, “el objetivo del Business Intelligence es eliminar las conjeturas y la ignorancia en los ambientes empresariales, aprovechando los vastos volúmenes de datos cuantitativos que las empresas recolectan todos los días en sus diversas aplicaciones corporativas”.
* BI como solución tecnológica
* Centralizar, depurar y afianzar los datos. Las tecnologías de BI permiten reunir, normalizar y centralizar toda la información de la empresa, mediante un almacén de datos, permitiendo así su explotación sin esfuerzo. De esta forma, los departamentos comercial, operativo y financiero basan las decisiones estratégicas en la misma información.
* Descubrir información no evidente para las aplicaciones actuales. En el día a día de las aplicaciones de gestión se pueden esconder pautas de comportamiento, tendencias, evoluciones del mercado, cambios en el consumo o en la producción, que resulta prácticamente imposible reconocer sin el software adecuado. Es lo que se puede calificar como extraer información de los datos, y conocimiento de la información.
* Optimizar el rendimiento de los sistemas. Las plataformas de BI se diseñan para perfeccionar al máximo las consultas de alto nivel, realizando las transformaciones oportunas a cada sistema (OLTP - OLAP), y liberando los servidores operacionales.
* BI como ventaja competitiva
* Seguimiento real del plan estratégico. Si su empresa dispone de plan estratégico, el business intelligence le permite, mediante un cuadro de mando, crear, manejar y monitorizar las métricas y los objetivos estratégicos propuestos en ese plan, para poder detectar a tiempo las desviaciones, adoptando las acciones oportunas para corregirlas.
* Aprender de errores pasados. Al historizar los datos relevantes, una aplicación de BI permite que una empresa aprenda de su historia y de sus mejores prácticas, y que pueda evitar tropezarse de nuevo con los mismos errores del pasado.
* Mejorar la competitividad. Según la consultora internacional Gartner, 7 de cada 10 compañías realizan análisis sobre sus datos de forma diaria, o incluso instantánea, en el 2.006. Este mecanismo les permite maximizar su rentabilidad. La acuciante tendencia a explotar la información marca cada vez más la diferencia en los sectores.
* Obtener el verdadero valor de las aplicaciones de gestión. Durante los últimos años, las empresas se han embarcado en la construcción de estas aplicaciones clave para sus negocios. Sin embargo, no siempre han sabido aprovechar todo el potencial que les pueden proporcionar: cuentas de resultados, cash-flow, etc… Con el business intelligence, todos los empleados, desde el director general hasta el último analista, tienen acceso a información adecuada, integrada y actualizada
Negocios Inteligentes (1ra-Parte)
Tomado de:
http://www.sinnexus.com/business_intelligence/
¿Qué es Business Intelligence?
Business Intelligence es la habilidad para transformar los datos en información, y la información en conocimiento, de forma que se pueda optimizar el proceso de toma de decisiones en los negocios.
Datos, información y conocimiento
Desde un punto de vista más pragmático, y asociándolo directamente con las tecnologías de la información, podemos definir Business Intelligence como el conjunto de metodologías, aplicaciones y tecnologías que permiten reunir, depurar y transformar datos de los sistemas transaccionales e información desestructurada (interna y externa a la compañía) en información estructurada, para su explotación directa (reporting, análisis OLTP / OLAP, alertas...) o para su análisis y conversión en conocimiento, dando así soporte a la toma de decisiones sobre el negocio.
La inteligencia de negocio actúa como un factor estratégico para una empresa u organización, generando una potencial ventaja competitiva, que no es otra que proporcionar información privilegiada para responder a los problemas de negocio: entrada a nuevos mercados, promociones u ofertas de productos, eliminación de islas de información, control financiero, optimización de costes, planificación de la producción, análisis de perfiles de clientes, rentabilidad de un producto concreto, etc...
Los principales productos de Business Intelligence que existen hoy en día son:
* Cuadros de Mando Integrales (CMI)
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Por otro lado, los principales componentes de orígenes de datos en el Business Intelligence que existen en la actualidad son:
* Datamart
* Datawarehouse
Los sistemas y componentes del BI se diferencian de los sistemas operacionales en que están optimizados para preguntar y divulgar sobre datos. Esto significa típicamente que, en un datawarehouse, los datos están desnormalizados para apoyar consultas de alto rendimiento, mientras que en los sistemas operacionales suelen encontrarse normalizados para apoyar operaciones continuas de inserción, modificación y borrado de datos. En este sentido, los procesos ETL (extracción, transformación y carga), que nutren los sistemas BI, tienen que traducir de uno o varios sistemas operacionales normalizados e independientes a un único sistema desnormalizado, cuyos datos estén completamente integrados.
En definitiva, una solución BI completa permite:
* Observar ¿qué está ocurriendo?
* Comprender ¿por qué ocurre?
* Predecir ¿qué ocurriría?
* Colaborar ¿qué debería hacer el equipo?
* Decidir ¿qué camino se debe seguir?
Datos, información, conocimiento
¿En qué se diferencia el conocimiento de los datos y de la información? En una conversación informal, los tres términos suelen utilizarse indistintamente y esto puede llevar a una interpretación libre del concepto de conocimiento. Quizás la forma más sencilla de diferenciar los términos sea pensar que los datos están localizados en el mundo y el conocimiento está localizado en agentes de cualquier tipo (personas, empresas, máquinas...), mientras que la información adopta un papel mediador entre ambos.
Los conceptos que se muestran a continuación se basan en las definiciones de Davenport y Prusak (1999).
Datos
Los datos son la mínima unidad semántica, y se corresponden con elementos primarios de información que por sí solos son irrelevantes como apoyo a la toma de decisiones. También se pueden ver como un conjunto discreto de valores, que no dicen nada sobre el por qué de las cosas y no son orientativos para la acción.
Un número telefónico o un nombre de una persona, por ejemplo, son datos que, sin un propósito, una utilidad o un contexto no sirven como base para apoyar la toma de una decisión. Los datos pueden ser una colección de hechos almacenados en algún lugar físico como un papel, un dispositivo electrónico (CD, DVD, disco duro...), o la mente de una persona. En este sentido las tecnologías de la información han aportado mucho a recopilación de datos.
Como cabe suponer, los datos pueden provenir de fuentes externas o internas a la organización, pudiendo ser de carácter objetivo o subjetivo, o de tipo cualitativo o cuantitativo, etc.
Información
La información se puede definir como un conjunto de datos procesados y que tienen un significado (relevancia, propósito y contexto), y que por lo tanto son de utilidad para quién debe tomar decisiones, al disminuir su incertidumbre. Los datos se pueden transforman en información añadiéndoles valor:
* Contextualizando: se sabe en qué contexto y para qué propósito se generaron.
* Categorizando: se conocen las unidades de medida que ayudan a interpretarlos.
* Calculando: los datos pueden haber sido procesados matemática o estadísticamente.
* Corrigiendo: se han eliminado errores e inconsistencias de los datos.
* Condensando: los datos se han podido resumir de forma más concisa (agregación).
Por tanto, la información es la comunicación de conocimientos o inteligencia, y es capaz de cambiar la forma en que el receptor percibe algo, impactando sobre sus juicios de valor y sus comportamientos.
Información = Datos + Contexto (añadir valor) + Utilidad (disminuir la incertidumbre)
Conocimiento
El conocimiento es una mezcla de experiencia, valores, información y know-how que sirve como marco para la incorporación de nuevas experiencias e información, y es útil para la acción. Se origina y aplica en la mente de los conocedores. En las organizaciones con frecuencia no sólo se encuentra dentro de documentos o almacenes de datos, sino que también esta en rutinas organizativas, procesos, prácticas, y normas.
El conocimiento se deriva de la información, así como la información se deriva de los datos. Para que la información se convierta en conocimiento es necesario realizar acciones como:
* Comparación con otros elementos.
* Predicción de consecuencias.
* Búsqueda de conexiones.
* Conversación con otros portadores de conocimiento.
Arquitectura de una solución de Business Intelligence
Una solución de Business Intelligence parte de los sistemas de origen de una organización (bases de datos, ERPs, ficheros de texto...), sobre los que suele ser necesario aplicar una transformación estructural para optimizar su proceso analítico.
Para ello se realiza una fase de extracción, transformación y carga (ETL) de datos. Esta etapa suele apoyarse en un almacén intermedio, llamado ODS, que actúa como pasarela entre los sistemas fuente y los sistemas destino (generalmente un datawarehouse), y cuyo principal objetivo consiste en evitar la saturación de los servidores funcionales de la organización.
La información resultante, ya unificada, depurada y consolidada, se almacena en un datawarehouse corporativo, que puede servir como base para la construcción de distintos datamarts departamentales. Estos datamarts se caracterizan por poseer la estructura óptima para el análisis de los datos de esa área de la empresa, ya sea mediante bases de datos transaccionales (OLTP) o mediante bases de datos analíticas (OLAP).
Los datos albergados en el datawarehouse o en cada datamart se explotan utilizando herramientas comerciales de análisis, reporting, alertas... etc. En estas herramientas se basa también la construcción de productos BI más completos, como los sistemas de soporte a la decisión (DSS), los sistemas de información ejecutiva (EIS) y los cuadros de mando (CMI) o Balanced Scorecard (BSC).
La Inteligencia de Negocio en los diferentes departamentos de la empresa
En todas las empresas cada departamento acumula diferentes datos: sobre sus clientes, sus inventarios, su producción, sobre la efectividad de las campañas de márketing, información sobre proveedores y socios, además de los datos que pueden proveer del exterior, como los referentes a competidores. En este sentido, el Business Intelligence puede realizar distintas aportaciones a cada departamento, siempre con el objetivo de integrar y optimizar la información disponible en la organización:
Departamento de marketing
El BI permite identificar de forma más precisa los segmentos de clientes y estudiar con mayor detalle su comportamiento. Para ello se pueden incluir análisis capaces de medir, por ejemplo, el impacto de los precios y las promociones en cada segmento.
Departamento de compras
El BI permite acceder a los datos del mercado, vinculándolos con la información básica necesaria para hallar las relaciones entre coste y beneficio. Al mismo tiempo, permite monitorizar la información de cada factoría o cadena de producción, lo que puede ayudar a optimizar el volumen de las compras.
Departamento de producción
El BI proporciona un mecanismo que permite analizar el rendimiento de cualquier tipo de proceso operativo, ya que comprende desde el control de calidad y la administración de inventarios hasta la planificación y la historización de la producción.
Departamento de ventas
El BI facilita la comprensión de las necesidades del cliente, así como responder a las nuevas oportunidades del mercado. También son posibles análisis de patrones de compra para aprovechar coyunturas de ventas con productos asociados.
Departamento económico-financiero
El BI permite acceder a los datos de forma inmediata y en tiempo real, mejorando así ciertas operaciones, que suelen incluir presupuestos, proyecciones, control de gestión, tesorería, balances y cuentas de resultados.
Departamento de atención al cliente
Aplicado a este ámbito, el BI permite evaluar con exactitud el valor de los segmentos del mercado y de los clientes individuales, además de ayudar a retener a los clientes más rentables.
Departamento de recursos humanos
Obteniendo los datos precisos de la fuente adecuada, el BI permite analizar los parámetros que más pueden afectar al departamento: satisfacción de los empleados, absentismo laboral, beneficio-hora/hombre… etc.
Finalmente, en caso de aprovechar la integración de la información con proveedores y socios, el BI ofrece niveles de análisis sobre cuestiones como nuevas oportunidades de inversión, o nuevas ocasiones para la colaboración con terceros.
Cuadro de Mando Integral
El Cuadro de Mando Integral (CMI), también conocido como Balanced Scorecard (BSC) o dashboard, es una herramienta de control empresarial que permite establecer y monitorizar los objetivos de una empresa y de sus diferentes áreas o unidades.
También se puede considerar como una aplicación que ayuda a una compañía a expresar los objetivos e iniciativas necesarias para cumplir con su estrategia, mostrando de forma continuada cuándo la empresa y los empleados alcanzan los resultados definidos en su plan estratégico.
Diferencia con otras herramientas de Business Intelligence
El Cuadro de Mando Integral se diferencia de otras herramientas de Business Intelligence, como los Sistemas de Soporte a la Decisión (DSS) o los Sistemas de Información Ejecutiva (EIS), en que está más orientados al seguimiento de indicadores que al análisis minucioso de información. Por otro lado, es muy común que un CMI sea controlado por la dirección general de una compañía, frente a otras herramientas de Business Intelligence más enfocadas a a la dirección departamental. El CMI requiere, por tanto, que los directivos analicen el mercado y la estrategia para construir un modelo de negocio que refleje las interrelaciones entre los diferentes componentes de la empresa (plan estratégico). Una vez que lo han construido, los responsables de la organización utilizan este modelo como mapa para seleccionar los indicadores del CMI.
Tipos de Cuadros de Mando
El Cuadro de Mando Operativo (CMO), es una herramienta de control enfocada al seguimiento de variables operativas, es decir, variables pertenecientes a áreas o departamentos específicos de la empresa. La periodicidad de los CMO puede ser diaria, semanal o mensual, y está centrada en indicadores que generalmente representan procesos, por lo que su implantación y puesta en marcha es más sencilla y rápida. Un CMO debería estar siempre ligado a un DSS (Sistema de Soporte a Decisiones) para indagar en profundidad sobre los datos.
El Cuadro de Mando Integral (CMI), por el contrario, representa la ejecución de la estrategia de una compañía desde el punto de vista de la Dirección General (lo que hace que ésta deba estar plenamente involucrada en todas sus fases, desde la definición a la implantación). Existen diferentes tipos de cuadros de mando integral, si bien los más utilizados son los que se basan en la metodología de Kaplan & Norton. La principales características de esta metodología son que utilizan tanto indicadores financieros como no financieros, y que los objetivos estratégicos se organizan en cuatro áreas o perspectivas: financiera, cliente, interna y aprendizaje/crecimiento.
* La perspectiva financiera incorpora la visión de los accionistas y mide la creación de valor de la empresa. Responde a la pregunta: ¿Qué indicadores tienen que ir bien para que los esfuerzos de la empresa realmente se transformen en valor? Esta perspectiva valora uno de los objetivos más relevantes de organizaciones con ánimo de lucro, que es, precisamente, crear valor para la sociedad.
* La perspectiva del cliente refleja el posicionamiento de la empresa en el mercado o, más concretamente, en los segmentos de mercado donde quiere competir. Por ejemplo, si una empresa sigue una estrategia de costes es muy posible que la clave de su éxito dependa de una cuota de mercado alta y unos precios más bajos que la competencia. Dos indicadores que reflejan este posicionamiento son la cuota de mercado y un índice que compare los precios de la empresa con los de la competencia.
* La perspectiva interna recoge indicadores de procesos internos que son críticos para el posicionamiento en el mercado y para llevar la estrategia a buen puerto. En el caso de la empresa que compite en coste, posiblemente los indicadores de productividad, calidad e innovación de procesos sean importantes. El éxito en estas dimensiones no sólo afecta a la perspectiva interna, sino también a la financiera, por el impacto que tienen sobre las rúbricas de gasto.
* La perspectiva de aprendizaje y crecimiento es la última que se plantea en este modelo de CMI. Para cualquier estrategia, los recursos materiales y las personas son la clave del éxito. Pero sin un modelo de negocio apropiado, muchas veces es difícil apreciar la importancia de invertir, y en épocas de crisis lo primero que se recorta es precisamente la fuente primaria de creación de valor: se recortan inversiones en la mejora y el desarrollo de los recursos.
Cuadro de Mando Integral
El Cuadro de Mando Integral (CMI), también conocido como Balanced Scorecard (BSC) o dashboard, es una herramienta de control empresarial que permite establecer y monitorizar los objetivos de una empresa y de sus diferentes áreas o unidades.
También se puede considerar como una aplicación que ayuda a una compañía a expresar los objetivos e iniciativas necesarias para cumplir con su estrategia, mostrando de forma continuada cuándo la empresa y los empleados alcanzan los resultados definidos en su plan estratégico.
Diferencia con otras herramientas de Business Intelligence
El Cuadro de Mando Integral se diferencia de otras herramientas de Business Intelligence, como los Sistemas de Soporte a la Decisión (DSS) o los Sistemas de Información Ejecutiva (EIS), en que está más orientados al seguimiento de indicadores que al análisis minucioso de información. Por otro lado, es muy común que un CMI sea controlado por la dirección general de una compañía, frente a otras herramientas de Business Intelligence más enfocadas a a la dirección departamental. El CMI requiere, por tanto, que los directivos analicen el mercado y la estrategia para construir un modelo de negocio que refleje las interrelaciones entre los diferentes componentes de la empresa (plan estratégico). Una vez que lo han construido, los responsables de la organización utilizan este modelo como mapa para seleccionar los indicadores del CMI.
Direrencia entre CMI, DSS y EIS
Tipos de Cuadros de Mando
El Cuadro de Mando Operativo (CMO), es una herramienta de control enfocada al seguimiento de variables operativas, es decir, variables pertenecientes a áreas o departamentos específicos de la empresa. La periodicidad de los CMO puede ser diaria, semanal o mensual, y está centrada en indicadores que generalmente representan procesos, por lo que su implantación y puesta en marcha es más sencilla y rápida. Un CMO debería estar siempre ligado a un DSS (Sistema de Soporte a Decisiones) para indagar en profundidad sobre los datos.
El Cuadro de Mando Integral (CMI), por el contrario, representa la ejecución de la estrategia de una compañía desde el punto de vista de la Dirección General (lo que hace que ésta deba estar plenamente involucrada en todas sus fases, desde la definición a la implantación). Existen diferentes tipos de cuadros de mando integral, si bien los más utilizados son los que se basan en la metodología de Kaplan & Norton. La principales características de esta metodología son que utilizan tanto indicadores financieros como no financieros, y que los objetivos estratégicos se organizan en cuatro áreas o perspectivas: financiera, cliente, interna y aprendizaje/crecimiento.
* La perspectiva financiera incorpora la visión de los accionistas y mide la creación de valor de la empresa. Responde a la pregunta: ¿Qué indicadores tienen que ir bien para que los esfuerzos de la empresa realmente se transformen en valor? Esta perspectiva valora uno de los objetivos más relevantes de organizaciones con ánimo de lucro, que es, precisamente, crear valor para la sociedad.
* La perspectiva del cliente refleja el posicionamiento de la empresa en el mercado o, más concretamente, en los segmentos de mercado donde quiere competir. Por ejemplo, si una empresa sigue una estrategia de costes es muy posible que la clave de su éxito dependa de una cuota de mercado alta y unos precios más bajos que la competencia. Dos indicadores que reflejan este posicionamiento son la cuota de mercado y un índice que compare los precios de la empresa con los de la competencia.
* La perspectiva interna recoge indicadores de procesos internos que son críticos para el posicionamiento en el mercado y para llevar la estrategia a buen puerto. En el caso de la empresa que compite en coste, posiblemente los indicadores de productividad, calidad e innovación de procesos sean importantes. El éxito en estas dimensiones no sólo afecta a la perspectiva interna, sino también a la financiera, por el impacto que tienen sobre las rúbricas de gasto.
* La perspectiva de aprendizaje y crecimiento es la última que se plantea en este modelo de CMI. Para cualquier estrategia, los recursos materiales y las personas son la clave del éxito. Pero sin un modelo de negocio apropiado, muchas veces es difícil apreciar la importancia de invertir, y en épocas de crisis lo primero que se recorta es precisamente la fuente primaria de creación de valor: se recortan inversiones en la mejora y el desarrollo de los recursos.
Perspectivas de un cuadro de mando
Pese a que estas cuatro son las perspectivas más genéricas, no son "obligatorias". Por ejemplo, una empresa de fabricación de ropa deportiva tiene, además de la perspectiva de clientes, una perspectiva de consumidores. Para esta empresa son tan importantes sus distribuidores como sus clientes finales.
Una vez que se tienen claros los objetivos de cada perspectiva, es necesario definir los indicadores que se utilizan para realizar su seguimiento. Para ello, debemos tener en cuenta varios criterios: el primero es que el número de indicadores no supere los siete por perspectiva, y si son menos, mejor. La razón es que demasiados indicadores difuminan el mensaje que comunica el CMI y, como resultado, los esfuerzos se dispersan intentando perseguir demasiados objetivos al mismo tiempo. Puede ser recomendable durante el diseño empezar con una lista más extensa de indicadores. Pero es necesario un proceso de síntesis para disponer de toda la fuerza de esta herramienta.
No obstante, la aportación que ha convertido al CMI en una de las herramientas más significativas de los últimos años es que se cimenta en un modelo de negocio. El éxito de su implantación radica en que el equipo de dirección se involucre y dedique tiempo al desarrollo de su propio modelo de negocio.
Beneficios de la implantación de un Cuadro de Mando Integral
* La fuerza de explicitar un modelo de negocio y traducirlo en indicadores facilita el consenso en toda la empresa, no sólo de la dirección, sino también de cómo alcanzarlo.
* Clarifica cómo las acciones del día a día afectan no sólo al corto plazo, sino también al largo plazo.
* Una vez el CMI está en marcha, se puede utilizar para comunicar los planes de la empresa, aunar los esfuerzos en una sola dirección y evitar la dispersión. En este caso, el CMI actúa como un sistema de control por excepción.
* Permita detectar de forma automática desviaciones en el plan estratégico u operativo, e incluso indagar en los datos operativos de la compañía hasta descubrir la causa original que dió lugar a esas desviaciones.
Riesgos de la implantación de un Cuadro de Mando Integral
* Un modelo poco elaborado y sin la colaboración de la dirección es papel mojado, y el esfuerzo será en vano.
* Si los indicadores no se escogen con cuidado, el CMI pierde una buena parte de sus virtudes, porque no comunica el mensaje que se quiere transmitir.
* Cuando la estrategia de la empresa está todavía en evolución, es contraproducente que el CMI se utilice como un sistema de control clásico y por excepción, en lugar de usarlo como una herramienta de aprendizaje.
* Existe el riesgo de que lo mejor sea enemigo de lo bueno, de que el CMI sea perfecto, pero desfasado e inútil.
Si no está familiarizado con la utilización de un cuadro de mando integral, puede resultarle útil, además, examinar las siguientes definiciones:
* Plan director
* Plan estratégico
* Plan operativo anual (POA)
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Sistemas de Soporte a la Decisión (DSS)
Un Sistema de Soporte a la Decisión (DSS) es una herramienta de Business Intelligence enfocada al análisis de los datos de una organización.
En principio, puede parecer que el análisis de datos es un proceso sencillo, y fácil de conseguir mediante una aplicación hecha a medida o un ERP sofisticado. Sin embargo, no es así: estas aplicaciones suelen disponer de una serie de informes predefinidos en los que presentan la información de manera estática, pero no permiten profundizar en los datos, navegar entre ellos, manejarlos desde distintas perspectivas... etc.
El DSS es una de las herramientas más emblemáticas del Business Intelligence ya que, entre otras propiedades, permiten resolver gran parte de las limitaciones de los programas de gestión. Estas son algunas de sus características principales:
* Informes dinámicos, flexibles e interactivos, de manera que el usuario no tenga que ceñirse a los listados predefinidos que se configuraron en el momento de la implantación, y que no siempre responden a sus dudas reales.
* No requiere conocimientos técnicos. Un usuario no técnico puede crear nuevos gráficos e informes y navegar entre ellos, haciendo drag&drop o drill through. Por tanto, para examinar la información disponible o crear nuevas métricas no es imprescindible buscar auxilio en el departamento de informática.
* Rapidez en el tiempo de respuesta, ya que la base de datos subyacente suele ser un datawarehouse corporativo o un datamart, con modelos de datos en estrella o copo de nieve. Este tipo de bases de datos están optimizadas para el análisis de grandes volúmenes de información (vease ánalisis OLTP-OLAP).
* Integración entre todos los sistemas/departamentos de la compañía. El proceso de ETL previo a la implantación de un Sistema de Soporte a la Decisión garantiza la calidad y la integración de los datos entre las diferentes unidades de la empresa. Existe lo que se llama: integridad referencial absoluta.
* Cada usuario dispone de información adecuada a su perfil. No se trata de que todo el mundo tenga acceso a toda la información, sino de que tenga acceso a la información que necesita para que su trabajo sea lo más eficiente posible.
* Disponibilidad de información histórica. En estos sistemas está a la orden del día comparar los datos actuales con información de otros períodos históricos de la compañía, con el fin de analizar tendencias, fijar la evolución de parámetros de negocio... etc.
Diferencia con otras herramientas de Business Intelligence
El principal objetivo de los Sistemas de Soporte a Decisiones es, a diferencia de otras herramientas como los Cuadros de Mando (CMI) o los Sistemas de Información Ejecutiva (EIS), explotar al máximo la información residente en una base de datos corporativa (datawarehouse o datamart), mostrando informes muy dinámicos y con gran potencial de navegación, pero siempre con una interfaz gráfica amigable, vistosa y sencilla.
Otra diferencia fundamental radica en los usuarios a los que están destinadas las plataformas DSS: cualquier nivel gerencial dentro de una organización, tanto para situaciones estructuradas como no estructuradas. (En este sentido, por ejemplo, los CMI están más orientados a la alta dirección).
Por último, destacar que los DSS suelen requerir (aunque no es imprescindible) un motor OLAP subyacente, que facilite el análisis casi ilimitado de los datos para hallar las causas raices de los problemas/pormenores de la compañía.
Tipos de Sistemas de Soporte a Decisiones
* Sistemas de información gerencial (MIS)
Los sistemas de información gerencial (MIS, Management Information Systems), tambien llamados Sistemas de Información Administrativa (AIS) dan soporte a un espectro más amplio de tareas organizacionales, encontrándose a medio camino entre un DSS tradicional y una aplicación CRM/ERP implantada en la misma compañía.
* Sistemas de información ejecutiva (EIS)
Los sistemas de información ejecutiva (EIS, Executive Information System) son el tipo de DSS que más se suele emplear en Business Intelligence, ya que proveen a los gerentes de un acceso sencillo a información interna y externa de su compañía, y que es relevante para sus factores clave de éxito.
* Sistemas expertos basados en inteligencia artificial (SSEE)
Los sistemas expertos, también llamados sistemas basados en conocimiento, utilizan redes neuronales para simular el conocimiento de un experto y utilizarlo de forma efectiva para resolver un problema concreto. Este concepto está muy relacionado con el datamining.
* Sistemas de apoyo a decisiones de grupo (GDSS)
Un sistema de apoyo a decisiones en grupos (GDSS, Group Decision Support Systems) es "un sistema basado en computadoras que apoya a grupos de personas que tienen una tarea (u objetivo) común, y que sirve como interfaz con un entorno compartido". El supuesto en que se basa el GDSS es que si se mejoran las comunicaciones se pueden mejorar las decisiones.
Sistemas de Soporte a la Decisión (DSS)
Un Sistema de Soporte a la Decisión (DSS) es una herramienta de Business Intelligence enfocada al análisis de los datos de una organización.
En principio, puede parecer que el análisis de datos es un proceso sencillo, y fácil de conseguir mediante una aplicación hecha a medida o un ERP sofisticado. Sin embargo, no es así: estas aplicaciones suelen disponer de una serie de informes predefinidos en los que presentan la información de manera estática, pero no permiten profundizar en los datos, navegar entre ellos, manejarlos desde distintas perspectivas... etc.
Sistemas de Soporte a la Decisión (DSS)
El DSS es una de las herramientas más emblemáticas del Business Intelligence ya que, entre otras propiedades, permiten resolver gran parte de las limitaciones de los programas de gestión. Estas son algunas de sus características principales:
* Informes dinámicos, flexibles e interactivos, de manera que el usuario no tenga que ceñirse a los listados predefinidos que se configuraron en el momento de la implantación, y que no siempre responden a sus dudas reales.
* No requiere conocimientos técnicos. Un usuario no técnico puede crear nuevos gráficos e informes y navegar entre ellos, haciendo drag&drop o drill through. Por tanto, para examinar la información disponible o crear nuevas métricas no es imprescindible buscar auxilio en el departamento de informática.
* Rapidez en el tiempo de respuesta, ya que la base de datos subyacente suele ser un datawarehouse corporativo o un datamart, con modelos de datos en estrella o copo de nieve. Este tipo de bases de datos están optimizadas para el análisis de grandes volúmenes de información (vease ánalisis OLTP-OLAP).
* Integración entre todos los sistemas/departamentos de la compañía. El proceso de ETL previo a la implantación de un Sistema de Soporte a la Decisión garantiza la calidad y la integración de los datos entre las diferentes unidades de la empresa. Existe lo que se llama: integridad referencial absoluta.
* Cada usuario dispone de información adecuada a su perfil. No se trata de que todo el mundo tenga acceso a toda la información, sino de que tenga acceso a la información que necesita para que su trabajo sea lo más eficiente posible.
* Disponibilidad de información histórica. En estos sistemas está a la orden del día comparar los datos actuales con información de otros períodos históricos de la compañía, con el fin de analizar tendencias, fijar la evolución de parámetros de negocio... etc.
Diferencia con otras herramientas de Business Intelligence
El principal objetivo de los Sistemas de Soporte a Decisiones es, a diferencia de otras herramientas como los Cuadros de Mando (CMI) o los Sistemas de Información Ejecutiva (EIS), explotar al máximo la información residente en una base de datos corporativa (datawarehouse o datamart), mostrando informes muy dinámicos y con gran potencial de navegación, pero siempre con una interfaz gráfica amigable, vistosa y sencilla.
Ejemplo DSS
Otra diferencia fundamental radica en los usuarios a los que están destinadas las plataformas DSS: cualquier nivel gerencial dentro de una organización, tanto para situaciones estructuradas como no estructuradas. (En este sentido, por ejemplo, los CMI están más orientados a la alta dirección).
Por último, destacar que los DSS suelen requerir (aunque no es imprescindible) un motor OLAP subyacente, que facilite el análisis casi ilimitado de los datos para hallar las causas raices de los problemas/pormenores de la compañía.
Tipos de Sistemas de Soporte a Decisiones
* Sistemas de información gerencial (MIS)
Los sistemas de información gerencial (MIS, Management Information Systems), tambien llamados Sistemas de Información Administrativa (AIS) dan soporte a un espectro más amplio de tareas organizacionales, encontrándose a medio camino entre un DSS tradicional y una aplicación CRM/ERP implantada en la misma compañía.
* Sistemas de información ejecutiva (EIS)
Los sistemas de información ejecutiva (EIS, Executive Information System) son el tipo de DSS que más se suele emplear en Business Intelligence, ya que proveen a los gerentes de un acceso sencillo a información interna y externa de su compañía, y que es relevante para sus factores clave de éxito.
* Sistemas expertos basados en inteligencia artificial (SSEE)
Los sistemas expertos, también llamados sistemas basados en conocimiento, utilizan redes neuronales para simular el conocimiento de un experto y utilizarlo de forma efectiva para resolver un problema concreto. Este concepto está muy relacionado con el datamining.
* Sistemas de apoyo a decisiones de grupo (GDSS)
Un sistema de apoyo a decisiones en grupos (GDSS, Group Decision Support Systems) es "un sistema basado en computadoras que apoya a grupos de personas que tienen una tarea (u objetivo) común, y que sirve como interfaz con un entorno compartido". El supuesto en que se basa el GDSS es que si se mejoran las comunicaciones se pueden mejorar las decisiones.
Otro ejemplo DSS
Si no está familiarizado con el concepto de Sistema de Soporte a Decisiones, puede resultarle útil, además, examinar las siguientes definiciones:
* Cuadro de Mando Integral
* Sistemas de Información Ejecutiva (EIS)
* Datawarehouse
* Datamart
* Datamining
http://www.sinnexus.com/business_intelligence/
¿Qué es Business Intelligence?
Business Intelligence es la habilidad para transformar los datos en información, y la información en conocimiento, de forma que se pueda optimizar el proceso de toma de decisiones en los negocios.
Datos, información y conocimiento
Desde un punto de vista más pragmático, y asociándolo directamente con las tecnologías de la información, podemos definir Business Intelligence como el conjunto de metodologías, aplicaciones y tecnologías que permiten reunir, depurar y transformar datos de los sistemas transaccionales e información desestructurada (interna y externa a la compañía) en información estructurada, para su explotación directa (reporting, análisis OLTP / OLAP, alertas...) o para su análisis y conversión en conocimiento, dando así soporte a la toma de decisiones sobre el negocio.
La inteligencia de negocio actúa como un factor estratégico para una empresa u organización, generando una potencial ventaja competitiva, que no es otra que proporcionar información privilegiada para responder a los problemas de negocio: entrada a nuevos mercados, promociones u ofertas de productos, eliminación de islas de información, control financiero, optimización de costes, planificación de la producción, análisis de perfiles de clientes, rentabilidad de un producto concreto, etc...
Los principales productos de Business Intelligence que existen hoy en día son:
* Cuadros de Mando Integrales (CMI)
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Por otro lado, los principales componentes de orígenes de datos en el Business Intelligence que existen en la actualidad son:
* Datamart
* Datawarehouse
Los sistemas y componentes del BI se diferencian de los sistemas operacionales en que están optimizados para preguntar y divulgar sobre datos. Esto significa típicamente que, en un datawarehouse, los datos están desnormalizados para apoyar consultas de alto rendimiento, mientras que en los sistemas operacionales suelen encontrarse normalizados para apoyar operaciones continuas de inserción, modificación y borrado de datos. En este sentido, los procesos ETL (extracción, transformación y carga), que nutren los sistemas BI, tienen que traducir de uno o varios sistemas operacionales normalizados e independientes a un único sistema desnormalizado, cuyos datos estén completamente integrados.
En definitiva, una solución BI completa permite:
* Observar ¿qué está ocurriendo?
* Comprender ¿por qué ocurre?
* Predecir ¿qué ocurriría?
* Colaborar ¿qué debería hacer el equipo?
* Decidir ¿qué camino se debe seguir?
Datos, información, conocimiento
¿En qué se diferencia el conocimiento de los datos y de la información? En una conversación informal, los tres términos suelen utilizarse indistintamente y esto puede llevar a una interpretación libre del concepto de conocimiento. Quizás la forma más sencilla de diferenciar los términos sea pensar que los datos están localizados en el mundo y el conocimiento está localizado en agentes de cualquier tipo (personas, empresas, máquinas...), mientras que la información adopta un papel mediador entre ambos.
Los conceptos que se muestran a continuación se basan en las definiciones de Davenport y Prusak (1999).
Datos
Los datos son la mínima unidad semántica, y se corresponden con elementos primarios de información que por sí solos son irrelevantes como apoyo a la toma de decisiones. También se pueden ver como un conjunto discreto de valores, que no dicen nada sobre el por qué de las cosas y no son orientativos para la acción.
Un número telefónico o un nombre de una persona, por ejemplo, son datos que, sin un propósito, una utilidad o un contexto no sirven como base para apoyar la toma de una decisión. Los datos pueden ser una colección de hechos almacenados en algún lugar físico como un papel, un dispositivo electrónico (CD, DVD, disco duro...), o la mente de una persona. En este sentido las tecnologías de la información han aportado mucho a recopilación de datos.
Como cabe suponer, los datos pueden provenir de fuentes externas o internas a la organización, pudiendo ser de carácter objetivo o subjetivo, o de tipo cualitativo o cuantitativo, etc.
Información
La información se puede definir como un conjunto de datos procesados y que tienen un significado (relevancia, propósito y contexto), y que por lo tanto son de utilidad para quién debe tomar decisiones, al disminuir su incertidumbre. Los datos se pueden transforman en información añadiéndoles valor:
* Contextualizando: se sabe en qué contexto y para qué propósito se generaron.
* Categorizando: se conocen las unidades de medida que ayudan a interpretarlos.
* Calculando: los datos pueden haber sido procesados matemática o estadísticamente.
* Corrigiendo: se han eliminado errores e inconsistencias de los datos.
* Condensando: los datos se han podido resumir de forma más concisa (agregación).
Por tanto, la información es la comunicación de conocimientos o inteligencia, y es capaz de cambiar la forma en que el receptor percibe algo, impactando sobre sus juicios de valor y sus comportamientos.
Información = Datos + Contexto (añadir valor) + Utilidad (disminuir la incertidumbre)
Conocimiento
El conocimiento es una mezcla de experiencia, valores, información y know-how que sirve como marco para la incorporación de nuevas experiencias e información, y es útil para la acción. Se origina y aplica en la mente de los conocedores. En las organizaciones con frecuencia no sólo se encuentra dentro de documentos o almacenes de datos, sino que también esta en rutinas organizativas, procesos, prácticas, y normas.
El conocimiento se deriva de la información, así como la información se deriva de los datos. Para que la información se convierta en conocimiento es necesario realizar acciones como:
* Comparación con otros elementos.
* Predicción de consecuencias.
* Búsqueda de conexiones.
* Conversación con otros portadores de conocimiento.
Arquitectura de una solución de Business Intelligence
Una solución de Business Intelligence parte de los sistemas de origen de una organización (bases de datos, ERPs, ficheros de texto...), sobre los que suele ser necesario aplicar una transformación estructural para optimizar su proceso analítico.
Para ello se realiza una fase de extracción, transformación y carga (ETL) de datos. Esta etapa suele apoyarse en un almacén intermedio, llamado ODS, que actúa como pasarela entre los sistemas fuente y los sistemas destino (generalmente un datawarehouse), y cuyo principal objetivo consiste en evitar la saturación de los servidores funcionales de la organización.
La información resultante, ya unificada, depurada y consolidada, se almacena en un datawarehouse corporativo, que puede servir como base para la construcción de distintos datamarts departamentales. Estos datamarts se caracterizan por poseer la estructura óptima para el análisis de los datos de esa área de la empresa, ya sea mediante bases de datos transaccionales (OLTP) o mediante bases de datos analíticas (OLAP).
Los datos albergados en el datawarehouse o en cada datamart se explotan utilizando herramientas comerciales de análisis, reporting, alertas... etc. En estas herramientas se basa también la construcción de productos BI más completos, como los sistemas de soporte a la decisión (DSS), los sistemas de información ejecutiva (EIS) y los cuadros de mando (CMI) o Balanced Scorecard (BSC).
La Inteligencia de Negocio en los diferentes departamentos de la empresa
En todas las empresas cada departamento acumula diferentes datos: sobre sus clientes, sus inventarios, su producción, sobre la efectividad de las campañas de márketing, información sobre proveedores y socios, además de los datos que pueden proveer del exterior, como los referentes a competidores. En este sentido, el Business Intelligence puede realizar distintas aportaciones a cada departamento, siempre con el objetivo de integrar y optimizar la información disponible en la organización:
Departamento de marketing
El BI permite identificar de forma más precisa los segmentos de clientes y estudiar con mayor detalle su comportamiento. Para ello se pueden incluir análisis capaces de medir, por ejemplo, el impacto de los precios y las promociones en cada segmento.
Departamento de compras
El BI permite acceder a los datos del mercado, vinculándolos con la información básica necesaria para hallar las relaciones entre coste y beneficio. Al mismo tiempo, permite monitorizar la información de cada factoría o cadena de producción, lo que puede ayudar a optimizar el volumen de las compras.
Departamento de producción
El BI proporciona un mecanismo que permite analizar el rendimiento de cualquier tipo de proceso operativo, ya que comprende desde el control de calidad y la administración de inventarios hasta la planificación y la historización de la producción.
Departamento de ventas
El BI facilita la comprensión de las necesidades del cliente, así como responder a las nuevas oportunidades del mercado. También son posibles análisis de patrones de compra para aprovechar coyunturas de ventas con productos asociados.
Departamento económico-financiero
El BI permite acceder a los datos de forma inmediata y en tiempo real, mejorando así ciertas operaciones, que suelen incluir presupuestos, proyecciones, control de gestión, tesorería, balances y cuentas de resultados.
Departamento de atención al cliente
Aplicado a este ámbito, el BI permite evaluar con exactitud el valor de los segmentos del mercado y de los clientes individuales, además de ayudar a retener a los clientes más rentables.
Departamento de recursos humanos
Obteniendo los datos precisos de la fuente adecuada, el BI permite analizar los parámetros que más pueden afectar al departamento: satisfacción de los empleados, absentismo laboral, beneficio-hora/hombre… etc.
Finalmente, en caso de aprovechar la integración de la información con proveedores y socios, el BI ofrece niveles de análisis sobre cuestiones como nuevas oportunidades de inversión, o nuevas ocasiones para la colaboración con terceros.
Cuadro de Mando Integral
El Cuadro de Mando Integral (CMI), también conocido como Balanced Scorecard (BSC) o dashboard, es una herramienta de control empresarial que permite establecer y monitorizar los objetivos de una empresa y de sus diferentes áreas o unidades.
También se puede considerar como una aplicación que ayuda a una compañía a expresar los objetivos e iniciativas necesarias para cumplir con su estrategia, mostrando de forma continuada cuándo la empresa y los empleados alcanzan los resultados definidos en su plan estratégico.
Diferencia con otras herramientas de Business Intelligence
El Cuadro de Mando Integral se diferencia de otras herramientas de Business Intelligence, como los Sistemas de Soporte a la Decisión (DSS) o los Sistemas de Información Ejecutiva (EIS), en que está más orientados al seguimiento de indicadores que al análisis minucioso de información. Por otro lado, es muy común que un CMI sea controlado por la dirección general de una compañía, frente a otras herramientas de Business Intelligence más enfocadas a a la dirección departamental. El CMI requiere, por tanto, que los directivos analicen el mercado y la estrategia para construir un modelo de negocio que refleje las interrelaciones entre los diferentes componentes de la empresa (plan estratégico). Una vez que lo han construido, los responsables de la organización utilizan este modelo como mapa para seleccionar los indicadores del CMI.
Tipos de Cuadros de Mando
El Cuadro de Mando Operativo (CMO), es una herramienta de control enfocada al seguimiento de variables operativas, es decir, variables pertenecientes a áreas o departamentos específicos de la empresa. La periodicidad de los CMO puede ser diaria, semanal o mensual, y está centrada en indicadores que generalmente representan procesos, por lo que su implantación y puesta en marcha es más sencilla y rápida. Un CMO debería estar siempre ligado a un DSS (Sistema de Soporte a Decisiones) para indagar en profundidad sobre los datos.
El Cuadro de Mando Integral (CMI), por el contrario, representa la ejecución de la estrategia de una compañía desde el punto de vista de la Dirección General (lo que hace que ésta deba estar plenamente involucrada en todas sus fases, desde la definición a la implantación). Existen diferentes tipos de cuadros de mando integral, si bien los más utilizados son los que se basan en la metodología de Kaplan & Norton. La principales características de esta metodología son que utilizan tanto indicadores financieros como no financieros, y que los objetivos estratégicos se organizan en cuatro áreas o perspectivas: financiera, cliente, interna y aprendizaje/crecimiento.
* La perspectiva financiera incorpora la visión de los accionistas y mide la creación de valor de la empresa. Responde a la pregunta: ¿Qué indicadores tienen que ir bien para que los esfuerzos de la empresa realmente se transformen en valor? Esta perspectiva valora uno de los objetivos más relevantes de organizaciones con ánimo de lucro, que es, precisamente, crear valor para la sociedad.
* La perspectiva del cliente refleja el posicionamiento de la empresa en el mercado o, más concretamente, en los segmentos de mercado donde quiere competir. Por ejemplo, si una empresa sigue una estrategia de costes es muy posible que la clave de su éxito dependa de una cuota de mercado alta y unos precios más bajos que la competencia. Dos indicadores que reflejan este posicionamiento son la cuota de mercado y un índice que compare los precios de la empresa con los de la competencia.
* La perspectiva interna recoge indicadores de procesos internos que son críticos para el posicionamiento en el mercado y para llevar la estrategia a buen puerto. En el caso de la empresa que compite en coste, posiblemente los indicadores de productividad, calidad e innovación de procesos sean importantes. El éxito en estas dimensiones no sólo afecta a la perspectiva interna, sino también a la financiera, por el impacto que tienen sobre las rúbricas de gasto.
* La perspectiva de aprendizaje y crecimiento es la última que se plantea en este modelo de CMI. Para cualquier estrategia, los recursos materiales y las personas son la clave del éxito. Pero sin un modelo de negocio apropiado, muchas veces es difícil apreciar la importancia de invertir, y en épocas de crisis lo primero que se recorta es precisamente la fuente primaria de creación de valor: se recortan inversiones en la mejora y el desarrollo de los recursos.
Cuadro de Mando Integral
El Cuadro de Mando Integral (CMI), también conocido como Balanced Scorecard (BSC) o dashboard, es una herramienta de control empresarial que permite establecer y monitorizar los objetivos de una empresa y de sus diferentes áreas o unidades.
También se puede considerar como una aplicación que ayuda a una compañía a expresar los objetivos e iniciativas necesarias para cumplir con su estrategia, mostrando de forma continuada cuándo la empresa y los empleados alcanzan los resultados definidos en su plan estratégico.
Diferencia con otras herramientas de Business Intelligence
El Cuadro de Mando Integral se diferencia de otras herramientas de Business Intelligence, como los Sistemas de Soporte a la Decisión (DSS) o los Sistemas de Información Ejecutiva (EIS), en que está más orientados al seguimiento de indicadores que al análisis minucioso de información. Por otro lado, es muy común que un CMI sea controlado por la dirección general de una compañía, frente a otras herramientas de Business Intelligence más enfocadas a a la dirección departamental. El CMI requiere, por tanto, que los directivos analicen el mercado y la estrategia para construir un modelo de negocio que refleje las interrelaciones entre los diferentes componentes de la empresa (plan estratégico). Una vez que lo han construido, los responsables de la organización utilizan este modelo como mapa para seleccionar los indicadores del CMI.
Direrencia entre CMI, DSS y EIS
Tipos de Cuadros de Mando
El Cuadro de Mando Operativo (CMO), es una herramienta de control enfocada al seguimiento de variables operativas, es decir, variables pertenecientes a áreas o departamentos específicos de la empresa. La periodicidad de los CMO puede ser diaria, semanal o mensual, y está centrada en indicadores que generalmente representan procesos, por lo que su implantación y puesta en marcha es más sencilla y rápida. Un CMO debería estar siempre ligado a un DSS (Sistema de Soporte a Decisiones) para indagar en profundidad sobre los datos.
El Cuadro de Mando Integral (CMI), por el contrario, representa la ejecución de la estrategia de una compañía desde el punto de vista de la Dirección General (lo que hace que ésta deba estar plenamente involucrada en todas sus fases, desde la definición a la implantación). Existen diferentes tipos de cuadros de mando integral, si bien los más utilizados son los que se basan en la metodología de Kaplan & Norton. La principales características de esta metodología son que utilizan tanto indicadores financieros como no financieros, y que los objetivos estratégicos se organizan en cuatro áreas o perspectivas: financiera, cliente, interna y aprendizaje/crecimiento.
* La perspectiva financiera incorpora la visión de los accionistas y mide la creación de valor de la empresa. Responde a la pregunta: ¿Qué indicadores tienen que ir bien para que los esfuerzos de la empresa realmente se transformen en valor? Esta perspectiva valora uno de los objetivos más relevantes de organizaciones con ánimo de lucro, que es, precisamente, crear valor para la sociedad.
* La perspectiva del cliente refleja el posicionamiento de la empresa en el mercado o, más concretamente, en los segmentos de mercado donde quiere competir. Por ejemplo, si una empresa sigue una estrategia de costes es muy posible que la clave de su éxito dependa de una cuota de mercado alta y unos precios más bajos que la competencia. Dos indicadores que reflejan este posicionamiento son la cuota de mercado y un índice que compare los precios de la empresa con los de la competencia.
* La perspectiva interna recoge indicadores de procesos internos que son críticos para el posicionamiento en el mercado y para llevar la estrategia a buen puerto. En el caso de la empresa que compite en coste, posiblemente los indicadores de productividad, calidad e innovación de procesos sean importantes. El éxito en estas dimensiones no sólo afecta a la perspectiva interna, sino también a la financiera, por el impacto que tienen sobre las rúbricas de gasto.
* La perspectiva de aprendizaje y crecimiento es la última que se plantea en este modelo de CMI. Para cualquier estrategia, los recursos materiales y las personas son la clave del éxito. Pero sin un modelo de negocio apropiado, muchas veces es difícil apreciar la importancia de invertir, y en épocas de crisis lo primero que se recorta es precisamente la fuente primaria de creación de valor: se recortan inversiones en la mejora y el desarrollo de los recursos.
Perspectivas de un cuadro de mando
Pese a que estas cuatro son las perspectivas más genéricas, no son "obligatorias". Por ejemplo, una empresa de fabricación de ropa deportiva tiene, además de la perspectiva de clientes, una perspectiva de consumidores. Para esta empresa son tan importantes sus distribuidores como sus clientes finales.
Una vez que se tienen claros los objetivos de cada perspectiva, es necesario definir los indicadores que se utilizan para realizar su seguimiento. Para ello, debemos tener en cuenta varios criterios: el primero es que el número de indicadores no supere los siete por perspectiva, y si son menos, mejor. La razón es que demasiados indicadores difuminan el mensaje que comunica el CMI y, como resultado, los esfuerzos se dispersan intentando perseguir demasiados objetivos al mismo tiempo. Puede ser recomendable durante el diseño empezar con una lista más extensa de indicadores. Pero es necesario un proceso de síntesis para disponer de toda la fuerza de esta herramienta.
No obstante, la aportación que ha convertido al CMI en una de las herramientas más significativas de los últimos años es que se cimenta en un modelo de negocio. El éxito de su implantación radica en que el equipo de dirección se involucre y dedique tiempo al desarrollo de su propio modelo de negocio.
Beneficios de la implantación de un Cuadro de Mando Integral
* La fuerza de explicitar un modelo de negocio y traducirlo en indicadores facilita el consenso en toda la empresa, no sólo de la dirección, sino también de cómo alcanzarlo.
* Clarifica cómo las acciones del día a día afectan no sólo al corto plazo, sino también al largo plazo.
* Una vez el CMI está en marcha, se puede utilizar para comunicar los planes de la empresa, aunar los esfuerzos en una sola dirección y evitar la dispersión. En este caso, el CMI actúa como un sistema de control por excepción.
* Permita detectar de forma automática desviaciones en el plan estratégico u operativo, e incluso indagar en los datos operativos de la compañía hasta descubrir la causa original que dió lugar a esas desviaciones.
Riesgos de la implantación de un Cuadro de Mando Integral
* Un modelo poco elaborado y sin la colaboración de la dirección es papel mojado, y el esfuerzo será en vano.
* Si los indicadores no se escogen con cuidado, el CMI pierde una buena parte de sus virtudes, porque no comunica el mensaje que se quiere transmitir.
* Cuando la estrategia de la empresa está todavía en evolución, es contraproducente que el CMI se utilice como un sistema de control clásico y por excepción, en lugar de usarlo como una herramienta de aprendizaje.
* Existe el riesgo de que lo mejor sea enemigo de lo bueno, de que el CMI sea perfecto, pero desfasado e inútil.
Si no está familiarizado con la utilización de un cuadro de mando integral, puede resultarle útil, además, examinar las siguientes definiciones:
* Plan director
* Plan estratégico
* Plan operativo anual (POA)
* Sistemas de Soporte a la Decisión (DSS)
* Sistemas de Información Ejecutiva (EIS)
Sistemas de Soporte a la Decisión (DSS)
Un Sistema de Soporte a la Decisión (DSS) es una herramienta de Business Intelligence enfocada al análisis de los datos de una organización.
En principio, puede parecer que el análisis de datos es un proceso sencillo, y fácil de conseguir mediante una aplicación hecha a medida o un ERP sofisticado. Sin embargo, no es así: estas aplicaciones suelen disponer de una serie de informes predefinidos en los que presentan la información de manera estática, pero no permiten profundizar en los datos, navegar entre ellos, manejarlos desde distintas perspectivas... etc.
El DSS es una de las herramientas más emblemáticas del Business Intelligence ya que, entre otras propiedades, permiten resolver gran parte de las limitaciones de los programas de gestión. Estas son algunas de sus características principales:
* Informes dinámicos, flexibles e interactivos, de manera que el usuario no tenga que ceñirse a los listados predefinidos que se configuraron en el momento de la implantación, y que no siempre responden a sus dudas reales.
* No requiere conocimientos técnicos. Un usuario no técnico puede crear nuevos gráficos e informes y navegar entre ellos, haciendo drag&drop o drill through. Por tanto, para examinar la información disponible o crear nuevas métricas no es imprescindible buscar auxilio en el departamento de informática.
* Rapidez en el tiempo de respuesta, ya que la base de datos subyacente suele ser un datawarehouse corporativo o un datamart, con modelos de datos en estrella o copo de nieve. Este tipo de bases de datos están optimizadas para el análisis de grandes volúmenes de información (vease ánalisis OLTP-OLAP).
* Integración entre todos los sistemas/departamentos de la compañía. El proceso de ETL previo a la implantación de un Sistema de Soporte a la Decisión garantiza la calidad y la integración de los datos entre las diferentes unidades de la empresa. Existe lo que se llama: integridad referencial absoluta.
* Cada usuario dispone de información adecuada a su perfil. No se trata de que todo el mundo tenga acceso a toda la información, sino de que tenga acceso a la información que necesita para que su trabajo sea lo más eficiente posible.
* Disponibilidad de información histórica. En estos sistemas está a la orden del día comparar los datos actuales con información de otros períodos históricos de la compañía, con el fin de analizar tendencias, fijar la evolución de parámetros de negocio... etc.
Diferencia con otras herramientas de Business Intelligence
El principal objetivo de los Sistemas de Soporte a Decisiones es, a diferencia de otras herramientas como los Cuadros de Mando (CMI) o los Sistemas de Información Ejecutiva (EIS), explotar al máximo la información residente en una base de datos corporativa (datawarehouse o datamart), mostrando informes muy dinámicos y con gran potencial de navegación, pero siempre con una interfaz gráfica amigable, vistosa y sencilla.
Otra diferencia fundamental radica en los usuarios a los que están destinadas las plataformas DSS: cualquier nivel gerencial dentro de una organización, tanto para situaciones estructuradas como no estructuradas. (En este sentido, por ejemplo, los CMI están más orientados a la alta dirección).
Por último, destacar que los DSS suelen requerir (aunque no es imprescindible) un motor OLAP subyacente, que facilite el análisis casi ilimitado de los datos para hallar las causas raices de los problemas/pormenores de la compañía.
Tipos de Sistemas de Soporte a Decisiones
* Sistemas de información gerencial (MIS)
Los sistemas de información gerencial (MIS, Management Information Systems), tambien llamados Sistemas de Información Administrativa (AIS) dan soporte a un espectro más amplio de tareas organizacionales, encontrándose a medio camino entre un DSS tradicional y una aplicación CRM/ERP implantada en la misma compañía.
* Sistemas de información ejecutiva (EIS)
Los sistemas de información ejecutiva (EIS, Executive Information System) son el tipo de DSS que más se suele emplear en Business Intelligence, ya que proveen a los gerentes de un acceso sencillo a información interna y externa de su compañía, y que es relevante para sus factores clave de éxito.
* Sistemas expertos basados en inteligencia artificial (SSEE)
Los sistemas expertos, también llamados sistemas basados en conocimiento, utilizan redes neuronales para simular el conocimiento de un experto y utilizarlo de forma efectiva para resolver un problema concreto. Este concepto está muy relacionado con el datamining.
* Sistemas de apoyo a decisiones de grupo (GDSS)
Un sistema de apoyo a decisiones en grupos (GDSS, Group Decision Support Systems) es "un sistema basado en computadoras que apoya a grupos de personas que tienen una tarea (u objetivo) común, y que sirve como interfaz con un entorno compartido". El supuesto en que se basa el GDSS es que si se mejoran las comunicaciones se pueden mejorar las decisiones.
Sistemas de Soporte a la Decisión (DSS)
Un Sistema de Soporte a la Decisión (DSS) es una herramienta de Business Intelligence enfocada al análisis de los datos de una organización.
En principio, puede parecer que el análisis de datos es un proceso sencillo, y fácil de conseguir mediante una aplicación hecha a medida o un ERP sofisticado. Sin embargo, no es así: estas aplicaciones suelen disponer de una serie de informes predefinidos en los que presentan la información de manera estática, pero no permiten profundizar en los datos, navegar entre ellos, manejarlos desde distintas perspectivas... etc.
Sistemas de Soporte a la Decisión (DSS)
El DSS es una de las herramientas más emblemáticas del Business Intelligence ya que, entre otras propiedades, permiten resolver gran parte de las limitaciones de los programas de gestión. Estas son algunas de sus características principales:
* Informes dinámicos, flexibles e interactivos, de manera que el usuario no tenga que ceñirse a los listados predefinidos que se configuraron en el momento de la implantación, y que no siempre responden a sus dudas reales.
* No requiere conocimientos técnicos. Un usuario no técnico puede crear nuevos gráficos e informes y navegar entre ellos, haciendo drag&drop o drill through. Por tanto, para examinar la información disponible o crear nuevas métricas no es imprescindible buscar auxilio en el departamento de informática.
* Rapidez en el tiempo de respuesta, ya que la base de datos subyacente suele ser un datawarehouse corporativo o un datamart, con modelos de datos en estrella o copo de nieve. Este tipo de bases de datos están optimizadas para el análisis de grandes volúmenes de información (vease ánalisis OLTP-OLAP).
* Integración entre todos los sistemas/departamentos de la compañía. El proceso de ETL previo a la implantación de un Sistema de Soporte a la Decisión garantiza la calidad y la integración de los datos entre las diferentes unidades de la empresa. Existe lo que se llama: integridad referencial absoluta.
* Cada usuario dispone de información adecuada a su perfil. No se trata de que todo el mundo tenga acceso a toda la información, sino de que tenga acceso a la información que necesita para que su trabajo sea lo más eficiente posible.
* Disponibilidad de información histórica. En estos sistemas está a la orden del día comparar los datos actuales con información de otros períodos históricos de la compañía, con el fin de analizar tendencias, fijar la evolución de parámetros de negocio... etc.
Diferencia con otras herramientas de Business Intelligence
El principal objetivo de los Sistemas de Soporte a Decisiones es, a diferencia de otras herramientas como los Cuadros de Mando (CMI) o los Sistemas de Información Ejecutiva (EIS), explotar al máximo la información residente en una base de datos corporativa (datawarehouse o datamart), mostrando informes muy dinámicos y con gran potencial de navegación, pero siempre con una interfaz gráfica amigable, vistosa y sencilla.
Ejemplo DSS
Otra diferencia fundamental radica en los usuarios a los que están destinadas las plataformas DSS: cualquier nivel gerencial dentro de una organización, tanto para situaciones estructuradas como no estructuradas. (En este sentido, por ejemplo, los CMI están más orientados a la alta dirección).
Por último, destacar que los DSS suelen requerir (aunque no es imprescindible) un motor OLAP subyacente, que facilite el análisis casi ilimitado de los datos para hallar las causas raices de los problemas/pormenores de la compañía.
Tipos de Sistemas de Soporte a Decisiones
* Sistemas de información gerencial (MIS)
Los sistemas de información gerencial (MIS, Management Information Systems), tambien llamados Sistemas de Información Administrativa (AIS) dan soporte a un espectro más amplio de tareas organizacionales, encontrándose a medio camino entre un DSS tradicional y una aplicación CRM/ERP implantada en la misma compañía.
* Sistemas de información ejecutiva (EIS)
Los sistemas de información ejecutiva (EIS, Executive Information System) son el tipo de DSS que más se suele emplear en Business Intelligence, ya que proveen a los gerentes de un acceso sencillo a información interna y externa de su compañía, y que es relevante para sus factores clave de éxito.
* Sistemas expertos basados en inteligencia artificial (SSEE)
Los sistemas expertos, también llamados sistemas basados en conocimiento, utilizan redes neuronales para simular el conocimiento de un experto y utilizarlo de forma efectiva para resolver un problema concreto. Este concepto está muy relacionado con el datamining.
* Sistemas de apoyo a decisiones de grupo (GDSS)
Un sistema de apoyo a decisiones en grupos (GDSS, Group Decision Support Systems) es "un sistema basado en computadoras que apoya a grupos de personas que tienen una tarea (u objetivo) común, y que sirve como interfaz con un entorno compartido". El supuesto en que se basa el GDSS es que si se mejoran las comunicaciones se pueden mejorar las decisiones.
Otro ejemplo DSS
Si no está familiarizado con el concepto de Sistema de Soporte a Decisiones, puede resultarle útil, además, examinar las siguientes definiciones:
* Cuadro de Mando Integral
* Sistemas de Información Ejecutiva (EIS)
* Datawarehouse
* Datamart
* Datamining
Suscribirse a:
Entradas (Atom)